Zou, Hui; Hastie, Trevor Regularization and variable selection via the elastic net. (English) Zbl 1069.62054 J. R. Stat. Soc., Ser. B, Stat. Methodol. 67, No. 2, 301-320 (2005). Summary: We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together. The elastic net is particularly useful when the number of predictors \((p)\) is much bigger than the number of observations \((n)\). By contrast, the lasso is not a very satisfactory variable selection method in the \(p\gg n\) case. An algorithm, called LARS-EN, is proposed for computing elastic net regularization paths efficiently, much like the algorithm LARS does for the lasso. Cited in 13 ReviewsCited in 1163 Documents MSC: 62J05 Linear regression; mixed models 65C60 Computational problems in statistics (MSC2010) Keywords:grouping effect; LARS algorithm; lasso; penalization; \(p\gg n\) problem; variable selection; prostate cancer Software:ElemStatLearn; lars PDF BibTeX XML Cite \textit{H. Zou} and \textit{T. Hastie}, J. R. Stat. Soc., Ser. B, Stat. Methodol. 67, No. 2, 301--320 (2005; Zbl 1069.62054) Full Text: DOI OpenURL References: [1] DOI: 10.1214/aos/1032181158 · Zbl 0867.62055 [2] DOI: 10.1016/j.jmva.2004.02.012 · Zbl 1047.62103 [3] Diaz-Uriarte R., Tech-nical Report (2003) [4] Donoho D. L., J. R. Statist. Soc. 57 pp 301– (1995) [5] DOI: 10.1214/009053604000000067 · Zbl 1091.62054 [6] DOI: 10.1198/016214501753382273 · Zbl 1073.62547 [7] Frank I., Technometrics 35 pp 109– (1993) [8] Friedman J., J. Am. Statist. Ass. 84 pp 249– (1989) [9] Friedman J., Ann. Statist. 32 pp 102– (2004) [10] Fu W., J. Computnl Graph. Statist. 7 pp 397– (1998) [11] Golub G., Matrix Computations (1983) · Zbl 0559.65011 [12] DOI: 10.1126/science.286.5439.531 [13] DOI: 10.1023/A:1012487302797 · Zbl 0998.68111 [14] Hastie T., Genome Biol. 2 pp 0003.1– (2003) [15] DOI: 10.1186/gb-2000-1-2-research0003 [16] Hastie T., The Elements of Statistical Learning; Data Mining, Inference and Prediction (2001) · Zbl 0973.62007 [17] Hoerl A., Encyclopedia of Statistical Sciences pp 129– (1988) [18] Rosset S., J. Mach. Learn. Res. 5 pp 941– (2004) [19] DOI: 10.1089/106652703322756177 [20] Stamey T., J. Urol. 16 pp 1076– (1989) [21] Tibshirani R., J. R. Statist. Soc. 58 pp 267– (1996) [22] DOI: 10.1073/pnas.082099299 [23] DOI: 10.1073/pnas.091062498 · Zbl 1012.92014 [24] DOI: 10.1073/pnas.201162998 [25] Zhang T., Ann. Statist. 32 pp 469– (2004) [26] Zhu J., Biostatistics 5 pp 427– (2004) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.