# zbMATH — the first resource for mathematics

Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains. (English) Zbl 1069.65517
Summary: A scheme for constructing orthogonal systems of bivariate polynomials in the Bernstein-Bézier form over triangular domains is formulated. The orthogonal basis functions have a hierarchical ordering by degree, facilitating computation of least-squares approximations of increasing degree (with permanence of coefficients) until the approximation error is subdued below a prescribed tolerance. The orthogonal polynomials reduce to the usual Legendre polynomials along one edge of the domain triangle, and within each fixed degree are characterized by vanishing Bernstein coefficients on successive rows parallel to that edge. Closed-form expressions and recursive algorithms for computing the Bernstein coefficients of these orthogonal bivariate polynomials are derived, and their application to surface smoothing problems is sketched. Finally, an extension of the scheme to the construction of orthogonal bases for polynomials over higher-dimensional simplexes is also presented.

##### MSC:
 65D17 Computer-aided design (modeling of curves and surfaces) 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
Full Text:
##### References:
  Appell, P.; Kampé de Fériet, J., Fonctions hypergéometriques at hypersphériques—polynômes d’Hermite, (1926), Gauthier-Villars Paris · JFM 52.0361.13  Askey, R., Orthogonal polynomials and special functions, (1975), SIAM Philadelphia · Zbl 0298.26010  Bertran, M., Note on orthogonal polynomials in ν-variables, SIAM J. math. anal., 6, 250-257, (1975) · Zbl 0273.33010  Davis, P.J., Interpolation and approximation, (1975), Dover New York · Zbl 0111.06003  Derriennic, M.-M., On multivariate approximation by Bernstein-type polynomials, J. approx. theory, 45, 155-166, (1985) · Zbl 0578.41010  Dunkl, C.F., Orthogonal polynomials on the hexagon, SIAM J. appl. math., 47, 343-351, (1987) · Zbl 0613.33010  Dunkl, C.F.; Xu, Y., Orthogonal polynomials of several variables, (2001), Cambridge University Press · Zbl 0964.33001  Farin, G., Triangular bernstein-Bézier patches, Computer aided geometric design, 3, 83-127, (1986)  Farin, G., Curves and surfaces for CAGD, (1993), Academic Press Boston  Farouki, R.T., Convergent inversion approximations for polynomials in Bernstein form, Computer aided geometric design, 17, 179-196, (2000) · Zbl 0939.68126  Farouki, R.T., Legendre – bernstein basis transformations, J. comput. appl. math., 119, 145-160, (2000) · Zbl 0962.65042  Farouki, R.T.; Goodman, T.N.T., On the optimal stability of the Bernstein basis, Math. comp., 65, 1553-1566, (1996) · Zbl 0853.65051  Farouki, R.T.; Rajan, V.T., On the numerical condition of polynomials in Bernstein form, Computer aided geometric design, 4, 191-216, (1987) · Zbl 0636.65012  Farouki, R.T.; Rajan, V.T., Algorithms for polynomials in Bernstein form, Computer aided geometric design, 5, 1-26, (1988) · Zbl 0648.65007  Gould, H.W., Combinatorial identities, (1972), Morgantown W. Va · Zbl 0263.05013  Hoffman, K.; Kunze, R., Linear algebra, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0212.36601  Jackson, D., Formal properties of orthogonal polynomials in two variables, Duke math. J., 2, 423-434, (1936) · JFM 62.0302.02  Kolb, A.; Pottmann, H.; Seidel, H.P., Fair surface reconstruction using quadratic functionals, (), 469-479  Koornwinder, T.H., Two-variable analogues of the classical orthogonal polynomials, () · Zbl 0297.33021  Koornwinder, T.H., 1976. Jacobi polynomials and their two-variable analogues. Thesis, University of Amsterdam  Koornwinder, T.H.; Schwartz, A.L., Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. approx., 13, 537-567, (1997) · Zbl 0937.33009  Kowalski, M.A., The recursion formulas for orthogonal polynomials in n variables, SIAM J. math. anal., 13, 309-315, (1982) · Zbl 0494.33011  Kowalski, M.A., Orthogonality and recursion formulas for polynomials in n variables, SIAM J. math. anal., 13, 316-323, (1982) · Zbl 0497.33011  Krall, H.L.; Sheffer, I.M., Orthogonal polynomials in two variables, Ann. mat. pura appl., 76, 325-376, (1967) · Zbl 0186.38602  Lachance, M.A., Chebyshev economization for parametric surfaces, Computer aided geometric design, 5, 195-208, (1988) · Zbl 0709.65012  Proriol, J., Sur une famille de polynomes á deux variables orthogonaux dans un triangle, C. R. acad. sci. Paris, 245, 2459-2461, (1957) · Zbl 0080.05204  Sauer, T., The genuine bernstein – durrmeyer operator on a simplex, Results in mathematics, 26, 99-130, (1994) · Zbl 0817.41014  Szegö, G., Orthogonal polynomials, (1975), American Mathematical Society Providence, RI · JFM 65.0278.03  Xu, Y., On multivariate orthogonal polynomials, SIAM J. math. anal., 24, 783-794, (1993) · Zbl 0770.42016  Xu, Y., Unbounded commuting operators and multivariate orthogonal polynomials, Proc. amer. math. soc., 119, 1223-1231, (1993) · Zbl 0796.33011  Xu, Y., Common zeros of polynomials in several variables and higher dimensional quadrature, (1994), Longman Scientific and Technical Harlow, Essex, England  Xu, Y., Multivariate orthogonal polynomials and operator theory, Trans. amer. math. soc., 343, 193-202, (1994) · Zbl 0832.42017  Xu, Y., Recurrence formulas for multivariate orthogonal polynomials, Math. comp., 62, 687-702, (1994) · Zbl 0802.42021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.