A locally conservative LDG method for the incompressible Navier-Stokes equations. (English) Zbl 1069.76029

Summary: A new local discontinuous Galerkin (LDG) method for incompressible stationary Navier-Stokes equations is proposed and analyzed. Four important features render this method unique: its stability, its local conservativity, its high-order accuracy, and the exact satisfaction of the incompressibility constraint. Although the method uses completely discontinuous approximations, a globally divergence-free approximate velocity in \(H(\text{div};\Omega)\) is obtained by simple, element-by-element post-processing. Optimal error estimates are proven, and an iterative procedure used to compute the approximate solution is shown to converge. This procedure is nothing but a discrete version of classical fixed point iteration used to obtain existence and uniqueness of solutions to incompressible Navier-Stokes equations by solving a sequence of Oseen problems. Numerical results are shown which verify the theoretical rates of convergence. They also confirm the independence of the number of fixed point iterations with respect to the discretization parameters. Finally, they show that the method works well for a wide range of Reynolds numbers.


76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs


Full Text: DOI


[1] Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742 – 760. · Zbl 0482.65060
[2] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749 – 1779. · Zbl 1008.65080
[3] Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise \?\textonesuperior functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306 – 324. · Zbl 1045.65100
[4] Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217 – 235. · Zbl 0599.65072
[5] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[6] Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676 – 1706. · Zbl 0987.65111
[7] B. Cockburn, G. Kanschat, and D. Schötzau, The local discontinuous Galerkin methods for linear incompressible flow: A review, Computers and Fluids (Special Issue: Residual based methods and discontinuous Galerkin schemes), to appear. · Zbl 1283.76031
[8] Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comp. 73 (2004), no. 246, 569 – 593. · Zbl 1066.76036
[9] Bernardo Cockburn, Guido Kanschat, Dominik Schötzau, and Christoph Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal. 40 (2002), no. 1, 319 – 343. · Zbl 1032.65127
[10] V. Girault, B. Rivière, and M. F. Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp., 74 (2005), 53-84. · Zbl 1057.35029
[11] Peter Hansbo and Mats G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 17-18, 1895 – 1908. · Zbl 1098.74693
[12] G. Kanschat, Block preconditioners for LDG discretizations of linear incompressible flow problems, J. Sci. Comput., 25 (2003), 815-831. · Zbl 1048.65110
[13] Ohannes A. Karakashian and Wadi N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), no. 1, 93 – 120. · Zbl 0933.76047
[14] L. I. G. Kovasznay, Laminar flow behind two-dimensional grid, Proc. Cambridge Philos. Soc. 44 (1948), 58 – 62. · Zbl 0030.22902
[15] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89 – 123. Publication No. 33. · Zbl 0341.65076
[16] Ilaria Perugia and Dominik Schötzau, An \?\?-analysis of the local discontinuous Galerkin method for diffusion problems, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 561 – 571. · Zbl 1001.76060
[17] Alfio Quarteroni and Alberto Valli, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994. · Zbl 0803.65088
[18] W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
[19] Dominik Schötzau, Christoph Schwab, and Andrea Toselli, Mixed \?\?-DGFEM for incompressible flows, SIAM J. Numer. Anal. 40 (2002), no. 6, 2171 – 2194 (2003). · Zbl 1055.76032
[20] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111 – 143 (English, with French summary). · Zbl 0608.65013
[21] Roger Temam, Sur l’approximation des solutions des équations de Navier-Stokes, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A219 – A221 (French). · Zbl 0173.11902
[22] Roger Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115 – 152 (French). · Zbl 0181.18903
[23] Andrea Toselli, \?\? discontinuous Galerkin approximations for the Stokes problem, Math. Models Methods Appl. Sci. 12 (2002), no. 11, 1565 – 1597. · Zbl 1041.76045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.