×

A new class of LRS Bianchi type-I cosmological models in Lyra geometry. (English) Zbl 1069.83500

Summary: LRS Bianchi type-I models have been studied in the cosmological theory based on Lyra’s geometry. A new class of exact solutions has been obtained by considering a time dependent displacement field for constant deceleration parameter models of the universe. The physical behaviour of the models is examined in vacuum and in the presence of perfect fluids.

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Folland, G., Weyl manifolds, J. diff. geom., 4, 145-153, (1970) · Zbl 0195.23904
[2] Lyra, G., Über eine modifikation der riemannschen geomtrie, Math. Z., 54, 52-54, (1951) · Zbl 0042.15902
[3] Sen, D.K., A static cosmological models, Z. für phys., 149, 311-323, (1957) · Zbl 0078.19501
[4] Sen, D.K.; Dunn, K.A., A scalar – tensor theory of gravitation in a modified Riemannian manifold, J. math. phys., 12, 578-586, (1971) · Zbl 0211.24804
[5] Halford, W.D., Cosmological theory based on lyra’s geometry, Aust. J. phys., 23, 863-869, (1970)
[6] Halford, W.D., Scalar – tensor theory of gravitation in lyra manifold, J. math. phys., 13, 1699-1703, (1972)
[7] Sen, D.K.; Vanstone, J.R., On Weyl and lyra manifolds, J. math. phys., 13, 990-993, (1972) · Zbl 0236.53035
[8] Bhamra, K.S., A cosmological model of class one on lyra’s manifold, Aust. J. phys., 27, 541-547, (1974)
[9] Karade, T.M.; Borikar, S.M., Thermodynamic equilibrium of a gravitating sphere in lyra geometry, Gen. rel. gravit., 9, 431-436, (1978)
[10] Kalyanshetti, S.B.; Waghmode, B.B., A static cosmological model in einstein – cartan theory, Gen. rel. gravit., 14, 823-830, (1982) · Zbl 0494.53027
[11] Reddy, D.R.K.; Innaiah, P., A plane symmetric cosmological model in lyra manifold, Astrophys. space sci., 123, 49-52, (1986) · Zbl 0592.76199
[12] Beesham, A., Vacuum Friedmann cosmology based on lyra’s manifold, Astrophys. space sci., 127, 189-191, (1986)
[13] Reddy, D.R.K.; Venkateswarlu, R., A static conformally flat cosmological model in lyra’s manifold, Astrophys. space sci., 136, 183-186, (1987)
[14] Soleng, H.H., Cosmologies based on lyra’s geometry, Gen. rel. gravit., 19, 1213-1216, (1987)
[15] Beesham, A., FLRW cosmological models in lyra’s manifold with time dependent displacement field, Aust. J. phys., 41, 833-842, (1988)
[16] Singh, T.; Singh, G.P., Bianchi type-I cosmological models in lyra geometry, J. math. phys., 32, 2456-2458, (1991) · Zbl 0736.76084
[17] Singh, T.; Singh, G.P., Bianchi type-II cosmological models in lyra geometry, Nuovo cimento B, 106, 617-622, (1991) · Zbl 0735.76095
[18] Singh, T.; Singh, G.P., Bianchi type III and kantowski – sachs cosmological models in lyra geometry, Int. J. theor. phys., 31, 1433-1446, (1992)
[19] Singh, T.; Singh, G.P., Lyra’s geometry and cosmology: a review, Fortschr. phys., 41, 737-764, (1993)
[20] Singh, G.P.; Desikan, K., A new class of cosmological models in lyra geometry, Pramana-J. phys., 49, 205-212, (1997)
[21] Hoyle, F., A new model for the expanding universe, Mon. not. roy. astron. soc., 108, 372, (1948) · Zbl 0031.38304
[22] Hoyle, F.; Narlikar, J.V., On the avoidance of singularities in C-field cosmology, Proc. roy. soc. London ser. A, 278, 465-478, (1964) · Zbl 0116.44701
[23] Hoyle, F.; Narlikar, J.V., Time symmetric electrodynamics and the arrow of the time in cosmology, Proc. roy. soc. London ser. A, 277, 1-23, (1964) · Zbl 0118.23404
[24] D. Kramer, et al., Exact Solutions of Einstein’s Field Equations, Cambridge University Press, Cambridge, 1980. · Zbl 0449.53018
[25] Berman, M.S., A special law of variation for hubble’s parameter, Nuovo cimento B, 74, 182-186, (1983)
[26] Berman, M.S.; Gomide, F.M., Cosmological models with constant deceleration parameter, Gen. rel. gravit., 20, 191-198, (1988)
[27] Johri, V.B.; Desikan, K., Cosmological models with constant deceleration parameter in nordtvedt’s theory, Pramana-J. phys., 42, 473-481, (1994)
[28] Maharaj, S.D.; Naidoo, R., Solutions to the field equations and the deceleration parameter, Astrophys. space sci., 208, 261-276, (1993) · Zbl 0806.53080
[29] Pradhan, A.; Yadav, V.K.; Chakrabarty, I., Bulk viscous FRW cosmology in lyra geometry, Int. J. mod. phys. D, 10, 339-349, (2001)
[30] Beesham, A., Cosmological models with a variable cosmological term and bulk viscous model, Phys. rev. D, 48, 3539-3543, (1993)
[31] G.F.R. Ellis, in: R.K. Sach (Ed.), General Relativity and Cosmology, Academic Press, New York, 1971, p. 117.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.