×

zbMATH — the first resource for mathematics

Semi-coercive variational inequalities with uncertain input data. Applications to shallow shells. (English) Zbl 1071.49006
The authors study existence and uniqueness of solutions of a semi-coercive variational inequality. Some applications of the presented problems to the theory of shallow elastic shells with uncertain material coefficients are indicated.

MSC:
49J40 Variational inequalities
93C73 Perturbations in control/observation systems
74K25 Shells
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ben-Haim Y., Studies in Appl. Mech. 25, in: Convex Models of Uncertainty in Applied Mechanics (1990) · Zbl 0703.73100 · doi:10.1016/B978-0-444-88406-0.50006-6
[2] Fichera G., Boundary Value Problems of Elasticity with Unilateral Constraints (1972)
[3] Goldenvejzer A. L., Theory of Thin Elastic Shells (1953)
[4] DOI: 10.1007/BF00249518 · Zbl 0193.39001 · doi:10.1007/BF00249518
[5] DOI: 10.1016/S0362-546X(96)00236-2 · Zbl 0896.35034 · doi:10.1016/S0362-546X(96)00236-2
[6] DOI: 10.1002/(SICI)1521-4001(199806)78:6<405::AID-ZAMM405>3.0.CO;2-Z · doi:10.1002/(SICI)1521-4001(199806)78:6<405::AID-ZAMM405>3.0.CO;2-Z
[7] Hlaváček I., Numer. Funct. Anal. Appl. 24 pp 509–
[8] Nečas J., Les Méthodes Directes en Théorie des Équations Elliptiques (1967)
[9] DOI: 10.1137/S0895479891219216 · Zbl 0796.65065 · doi:10.1137/S0895479891219216
[10] Vlasov V. Z., General Theory of Shells (1949)
[11] Schatzman M., Ann. Sc. Norm. Sup. Pisa 27 pp 641–
[12] DOI: 10.1007/978-1-4612-5152-1 · doi:10.1007/978-1-4612-5152-1
[13] DOI: 10.1142/S0219199702000579 · Zbl 1012.47052 · doi:10.1142/S0219199702000579
[14] Baiocchi C., Ann. Sc. Norm. Sup. Pisa, Cl. Sci. Ser. IV 13 pp 617–
[15] DOI: 10.1016/S0378-4754(01)00433-5 · Zbl 1021.74030 · doi:10.1016/S0378-4754(01)00433-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.