zbMATH — the first resource for mathematics

Kirchhoff’s problem of helical equilibria of uniform rods. (English) Zbl 1071.74031
Summary: It is demonstrated that a uniform and hyperelastic, but otherwise arbitrary, nonlinear Cosserat rod subject to appropriate end loadings has equilibria whose center lines form two-parameter families of helices. The absolute energy minimizer that arises in the absence of any end loading is a helical equilibrium by the assumption of uniformity, but more generally the helical equilibria arise for non-vanishing end loads. For inextensible, unshearable rods the two parameters correspond to arbitrary values of the curvature and torsion of the helix. For non-isotropic rods, each member of the two-dimensional family of helical center lines has at least two possible equilibrium orientations of the director frame. The possible orientations are characterized by a pair of finite-dimensional, dual variational principles involving pointwise values of the strain-energy density and its conjugate function. For isotropic rods, the characterization of possible equilibrium configurations degenerates, and in place of a discrete number of two-parameter families of helical equilibria, typically a single four-parameter family arises. The four continuous parameters correspond to the two of the helical center lines, a one-parameter family of possible angular phases, and a one-parameter family of imposed excess twists.

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G65 Energy minimization in equilibrium problems in solid mechanics
Full Text: DOI
[1] S.S. Antman, Kirchhoff’s problem for nonlinearly elastic rods. Quart. Appl. Math. 32 (1974) 221–240. · Zbl 0302.73031
[2] S.S. Antman, Nonlinear Problems of Elasticity. Springer-Verlag, New York (1995). · Zbl 0820.73002
[3] N. Chouaieb, Kirchhoff’s problem of helical solutions of uniform rods and their stability properties. Thèse 2717, Ecole Polytechnique Fédérale de Lausanne (2003).
[4] E. Cosserat and F. Cosserat, Théorie des Corps Déformables. Hermann, Paris (1909). · JFM 40.0862.02
[5] H.R. Crane, Principles and problems of biological growth. The Scientific Monthly 6 (1950) 376–389.
[6] J.L. Ericksen, Simpler static problems in nonlinear elastic rods. Internat. J. Solids Struct. 6 (1970) 371–377. · Zbl 0213.26805 · doi:10.1016/0020-7683(70)90045-4
[7] J. Galloway, Helical imperative: paradigm of form and function. In: Encyclopedia of Life Sciences (2001) pp. 1–7; http://www.els.net.
[8] A. Goriely, M. Nizette and M. Tabor, On the dynamics of elastic strips. J. Nonlinear Sci. 11 (2001) 3–45. · Zbl 1053.74026 · doi:10.1007/s003320010009
[9] A. Goriely and P. Shipman, Dynamics of helical strips. Phys. Rev. E 61 (2000) 4508–4517. · doi:10.1103/PhysRevE.61.4508
[10] T.J. Healey, Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7 (2002) 405–420. · Zbl 1090.74610 · doi:10.1177/108128028482
[11] S. Kehrbaum and J.H. Maddocks, Elastic rods, rigid bodies, quaternions and the last quadrature. Phil. Trans. Roy. Soc. London 355 (1997) 2117–2136. · Zbl 0895.73029 · doi:10.1098/rsta.1997.0113
[12] G. Kirchhoff, Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. (Crelle) 56 (1859) 285–313. · ERAM 056.1494cj · doi:10.1515/crll.1859.56.285
[13] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944).
[14] R.S. Manning and K.A. Hoffman, Stability of n-covered circles for elastic rods with constant planar intrinsic curvature. J. Elasticity 62 (2001) 1–23. · Zbl 1036.74019 · doi:10.1023/A:1010905411426
[15] S. Neukirch and M.E. Henderson, Classification of the spatial equilibria of the clamped elastica: Symmetries and zoology of solutions. J. Elasticity 68 (2002) 95–121. · Zbl 1073.74037 · doi:10.1023/A:1026064603932
[16] A.B. Whitman and DeSilva C.N., An exact solution in a nonlinear theory of rods. J. Elasticity 4 (1974) 265–280. · Zbl 0295.73052 · doi:10.1007/BF00048610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.