×

zbMATH — the first resource for mathematics

A guide to the mathematics of \(E\)-infinity Cantorian spacetime theory. (English) Zbl 1071.81503
Introduction: In recent years there has been a flurry of original research papers published on the foundation and application of \(E\)-infinity Cantorian spacetime theory. However, only a handful of these papers were review articles [the author, ibid. 19, No. 1, 209–236 (2004; Zbl 1071.81501)] or articles designed for a partial overview on the theory [the author, ibid. 18, No. 2, 401–420 (2003; Zbl 1056.81045) and Int. J. Theor. Phys. 37, No. 12, 2935–2951 (1998; Zbl 0935.58005)]. The present article is intended to help this shortcoming by offering a relatively comprehensive but concise review of this theory.

MSC:
81P05 General and philosophical questions in quantum theory
81V99 Applications of quantum theory to specific physical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] El Naschie, M.S., A review of E-infinity theory, Chaos, solitons & fractals, 19, 209-236, (2004) · Zbl 1071.81501
[2] El Naschie, M.S., Super strings, knots and non-commutative geometry in E-infinity space, Int J theoret phys, 37, 12, (1988)
[3] El Naschie, M.S., The VAK of vacuum fluctuation, spontaneous self-organisation and complexity theory interpretation of high-energy particle physics and the mass problem, Chaos, solitons & fractals, 18, 401-442, (2003) · Zbl 1056.81045
[4] El Naschie, M.S., Wild topology, hyperbolic geometry and fusion algebra of high energy particle physics, Chaos, solitons & fractals, 13, 1935-1945, (2002) · Zbl 1024.81055
[5] El Naschie, M.S., On a class of general theories for high energy particle physics, Chaos, solitons & fractals, 14, 649-668, (2002)
[6] El Naschie, M.S., Transfinite electrical networks, spinoral varieties and gravity Q bits, Int J nonlinear sci numer simul, 5, 3, 191-197, (2004)
[7] M.S. El Naschie, On the cohomology and instantons number of E-infinity Cantorian spacetime. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2004.12.019
[8] Donaldson, S.; Kronheimer, P., The geometry of four-manifolds, (1990), Oxford · Zbl 0820.57002
[9] Green, M.; Schwarz, J.; Witten, E., Superstring theory, vol. I & II, (1993), Cambridge
[10] El Naschie, M.S., Determining the number of Higgs particles starting from general relativity and various other field theories, Chaos, solitons & fractals, 23, 711-726, (2005) · Zbl 1070.83530
[11] El Naschie, M.S., On einstein’s super symmetric tensor and the number of elementary particles of the standard model, Chaos, solitons & fractals, 23, 1521-1525, (2005) · Zbl 1070.83537
[12] El Naschie, M.S., Light cone quantization heterotic strings and E-infinity derivation of the number of Higgs bosons, Chaos, solitons & fractals, 23, 1931-1933, (2005) · Zbl 1068.81625
[13] Kaku, M., Strings, conformal fields and M theory, (2000), Springer New York · Zbl 1052.81085
[14] Witten, E., Reflection on the fate of spacetime, Phys today, 96, 4, 24-30, (1996)
[15] El Naschie, M.S., Gödel universe dualities and high energy particles in E-infinity, Chaos, solitons & fractals, 25, 3, 759-764, (2005) · Zbl 1073.83531
[16] El Naschie, M.S., On ’t Hooft dimensional regularization in E-infinity space, Chaos, solitons & fractals, 12, 851-858, (2001) · Zbl 1012.83008
[17] Nottale, L., Fractal spacetime and micro physics, (1993), World Scientific Singapore
[18] Ord, G., A geometric analogue of relativistic quantum mechanics, J phys A, 16, 1869-1884, (1983)
[19] El Naschie, M.S., Quantum mechanics and the possibility of Cantorian spacetime, Chaos, solitons & fractals, 1, 5, 485-487, (1992) · Zbl 0758.58015
[20] Svozil, K., Quantum field theory on fractal spacetime. A new regularization method, J phys A, 20, 3861-3875, (1987)
[21] M.S. El Naschie, Mohamed El Naschie answers a few questions about this month’s emerging research front in the field of physics. Available from: http://esi-topics.com/erf/2004/October04-MohamedElNaschie.html. (In ISI Essential Science Indicators — Special Topics.)
[22] Goldfain, E., Local scale invariance, Cantorian spacetime and unified field theory, Chaos, solitons & fractals, 23, 3, 701-710, (2005) · Zbl 1070.83541
[23] Agop, M.; Nica, P., El naschie’s coherence on sub-quantum medium, Chaos, solitons & fractals, 23, 5, 1497-1510, (2005) · Zbl 1077.81506
[24] Marek-Crnjac, L., On the unification of all fundamental forces in a fundamentally fuzzy Cantorian E-infinity manifold and high energy particle physics, Chaos, solitons & fractals, 20, 4, 669-682, (2004) · Zbl 1058.81782
[25] Iovane, G., Wave guiding and mirroring effects in stochastic self-similar and Cantorian E-infinity universe, Chaos, solitons & fractals, 23, 3, 691-700, (2005) · Zbl 1070.83542
[26] Czajko, J., On intrinsic gravitational repulsion, Chaos, solitons & fractals, 20, 4, 683-700, (2004) · Zbl 1053.83513
[27] Saniga, M., On an observer-related unequivalence between spatial dimension and generic Cremonian universe, Chaos, solitons & fractals, 23, 5, 1935-1940, (2005) · Zbl 1070.83546
[28] Sidharth, B.G., The new cosmos, Chaos, solitons & fractals, 18, 1, 197-201, (2003) · Zbl 1129.83360
[29] Tanaka, Y., Spacetime symmetry chaos and E-infinity, Chaos, solitons & fractals, 23, 2, 335-350, (2005)
[30] He, J.-H., In search of 9 hidden particles, Int J nonlinear sci numer simul, 6, 2, 92-93, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.