zbMATH — the first resource for mathematics

Fractal rigidity in migraine. (English) Zbl 1071.92016
Summary: We study the middle cerebral artery blood flow velocity in humans using transcranial Doppler ultrasonography. Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short-time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of underlying cerebral blood flow control system. We call this effect fractal rigidity.

92C50 Medical applications (general)
92C35 Physiological flow
92C05 Biophysics
92C55 Biomedical imaging and signal processing
Full Text: DOI
[1] Bassingthwaighte, J.B.; Liebovitch, L.S.; West, B.J., Fractal physiology, (1994), Oxford University Press New York
[2] Peng, C.K.; Mietus, J.; Hausdorff, J.M.; Havlin, S.; Stanley, H.E.; Goldberger, A.L., Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. rev. lett., 70, 1343-1346, (1993)
[3] Goldberger, A.L., Nonlinear dynamics, fractals, and chaos theory: implications for neuroautonomic heart rate control in health and disease, ()
[4] Hausdorff, J.M.; Peng, C.K.; Ladin, Z.; Wei, J.Y.; Goldberger, A.L., Is walking a random walk? evidence for long-range correlations in stride interval of human gait, J. appl. physiol., 78, 349-358, (1995)
[5] Hausdorff, J.M.; Mitchell, S.L.; Firtion, R.; Peng, C.K.; Cudkowicz, M.E.; Wei, J.Y., Altered fractal dynamics of gait: reduced stride-interval correlations with aging and huntington’s disease, J. appl. phys., 82, 262-269, (1997)
[6] West, B.J.; Griffin, L., Allometric control of human gait, Fractals, 6, 101-108, (1998)
[7] Peng, C.-K.; Hausdorff, J.M.; Goldberger, A.L., Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease, (), 66-96
[8] Heistad, D.D.; Kontos, H.A., Cerebral circulation, (1983), American Physiological Society Bethesda, p. 137-82
[9] Paulson, O.B.; Strandgaard, S.; Edvinsson, L., Cerebral autoregulation, Cerebrovasc. brain metab. rev., 2, 161-192, (1990)
[10] Cutrer, F.M.; O’Donnell, A.; Sanchez del Rio, M., Functional neuroimaging: enhanced understanding of migraine pathophysiology, Neurology, 55, S36-S45, (2000)
[11] Ferrari, M.D., Migraine, Lancet, 351, 1043-1051, (1998)
[12] Goadsby, P.J.; Lipton, R.B.; Ferrari, M.D., Migraine – current understanding and treatment, N. engl. J. med., 346, 257-270, (2002)
[13] Goadsby, P.J., Pathophysiology of headache, (), 57-72
[14] Battistella, P.A.; Ruffilli, R.; Dalla Pozza, F.; Pitassi, I.; Casara, G.L.; Boniver, C., 99mtc HM-PAO SPECT in pediatric migraine, Headache, 30, 646-649, (1990)
[15] Mirza, M.; Tutus, A.; Erdogan, F.; Kula, M.; Tomar, A.; Silov, G., Interictal SPECT with tc-99m HMPAO studies in migraine patients, Acta neurol. belg., 98, 190-194, (1998)
[16] Olesen, J.; Friberg, L.; Olsen, T.S.; Iversen, H.K.; Lassen, N.A.; Andersen, A.R., Timing and topography of cerebral blood flow, aura, and headache during migraine attacks, Ann. neurol., 28, 791-798, (1990)
[17] Heckmann, J.G.; Hilz, M.J.; Katalinic, A.; Marthol, H.; Muck-Weymann, M.; Neundorfer, B., Myogenic cerebrovascular autoregulation in migraine measured by stress transcranial Doppler sonography, Cephalalgia, 18, 133-137, (1998)
[18] Zhang, R.; Zuckerman, J.H.; Giller, C.A.; Levine, B.D., Transfer function analysis of dynamic cerebral autoregulation in humans, Am. J. physiol., 274, H233-H241, (1998)
[19] Keunen, R.W.; Pijlman, H.C.; Visee, H.F.; Vliegen, J.H.; Tavy, D.L.; Stam, K.J., Dynamical chaos determines the variability of transcranial Doppler signals, Neurol. res., 16, 353-358, (1994)
[20] Keunen, R.W.; Vliegen, J.H.; Stam, C.J.; Tavy, D.L., Nonlinear transcranial Doppler analysis demonstrates age-related changes of cerebral hemodynamics, Ultrasound med. biol., 22, 383-390, (1996)
[21] Rossitti, S.; Stephensen, H., Temporal heterogeneity of the blood flow velocity at the middle cerebral artery in the normal human characterized by fractal analysis, Acta physiol. scand., 151, 191-198, (1994)
[22] West, B.J.; Zhang, R.; Sanders, A.W.; Zuckerman, J.H.; Levine, B.D., Fractal fluctuations in transcranial Doppler signals, Phys. rev. E, 59, 3492-3498, (1999)
[23] West, B.J.; Latka, M.; Glaubic-Latka, M.; Latka, D., Multifractality of cerebral blood flow, Physica A, 318, 453-460, (2003) · Zbl 1010.92016
[24] Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Headache Classification Committee of the International Headache Society. Cephalalgia. 1988;8 Suppl 7:1-96
[25] Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L., Mosaic organization of DNA nucleotides, Phys. rev. E, 49, 1685-1689, (1994)
[26] Glass, L.; Mackey, M.C., From clocks to chaos, the rhythms of life, (1988), Princeton University Press New Jersey · Zbl 0705.92004
[27] Afra, J.; Proietti Cecchini, A.; Sandor, P.S.; Schoenen, J., Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks, Clin. neurophysiol., 111, 1124-1129, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.