Roughness in rings. (English) Zbl 1072.16042

Let \(I\) be an ideal of a ring \(R\). Let \(P(R)\) denote the power set of \(R\). Define \(\underline{Apr}_I\colon P(R)\to P(R)\) and \(\overline{Apr}_I\colon P(R)\to P(R)\) as follows: \(\forall X\in P(R)\), \(\underline{Apr}_I(X)=\{x\in R\mid x+I\subseteq X\}\) and \(\overline{Apr}_I(X)=\{x\in R\mid(x+I)\cap X\neq\emptyset\}\). Then \(\underline{Apr}_I(X)\) and \(\overline{Apr}_I(X)\) are called the lower and upper approximations of \(X\), respectively, with respect to the ideal \(I\). This definition is consistent with the usual definitions in rough set theory since \(I\) defines an equivalence relation \(\sim\) on \(R\), i.e., \(a\sim b\Leftrightarrow a-b\in I\) and \(x+I\) is an equivalence class of \(\sim\).
The author then proves basic properties of lower and upper approximations on \(R\). For example, let \(A\) and \(B\) be nonempty subsets of \(R\). Then the author shows that (1) \(\overline{Apr}_I(A)\bullet\overline{Apr}_I(B)=\overline{Apr}_I(A\bullet B)\); (2) \(\overline{Apr}_I(A)+\overline{Apr}_I(B)=\overline{Apr}_I(A+B)\); (3) \(\underline{Apr}_I(A)\bullet\underline{Apr}_I(B)\subseteq\underline{Apr}_I(A \bullet B)\); (4) \(\underline{Apr}_I(A)+\underline{Apr}_I(B)\subseteq \underline{Apr}_I(A+B)\).
Let \(J\) be an ideal (subring) of \(R\). The author shows that \(\overline{Apr}_I(J)\) and \(\underline{Apr}_I(J)\) are ideals (subrings) of \(R\). Let \(I\) and \(J\) be ideals of \(R\) and \(K\) a subring of \(R\). The author shows that \(\overline{Apr}_I(K)\bullet\overline{Apr}_J(K)\subseteq \overline{Apr}_{(I+J)}(K)\); \(\underline{Apr}_I(K)\bullet\underline{Apr}_J(K)= \underline{Apr}_{(I+J)}(K)\); \(\overline{Apr}_I(K)+\overline{Apr}_J(K)= \overline{Apr}_{(I+J)}(K)\); \(\underline{Apr}_I(K)+\underline{Apr}_J(K)= \underline{Apr}_{(I+J)}(K)\).
The author examines the homomorphic images of lower and upper approximations of sets. He then studies fuzzy sets, fuzzy rough sets and fuzzy rough ideals with respect to lower and upper approximations.


16Y99 Generalizations
16D25 Ideals in associative algebras
03E72 Theory of fuzzy sets, etc.
Full Text: DOI


[1] Biswas, R.; Nanda, S., Rough groups and rough subgroups, Bull. Polish acad. sci. math., 42, 251-254, (1994) · Zbl 0834.68102
[2] Bonikowaski, Z., Algebraic structures of rough sets, (), 242-247
[3] S.D. Comer, On connections between information systems, rough sets and algebraic logic, in: C. Rauszer (Ed.), Algebraic Methods in Logic and Computer Science, Banach Center Publications 28, Warsaw, 1993, pp. 117-124 · Zbl 0793.03074
[4] Davvaz, B., Rough sets in a fundamental ring, Bull. Iranian math. soc., 24, 2, 49-61, (1998) · Zbl 0935.20064
[5] Davvaz, B., Lower and upper approximations in Hv-groups, Ratio math., 13, 71-86, (1999) · Zbl 0980.20072
[6] Davvaz, B., Approximations in Hv-modules, Taiwanese J. math., 6, 4, 499-505, (2002) · Zbl 1044.20042
[7] Davvaz, B., Fuzzy sets and probabilistic rough sets, Int. J. sci. technol. univ. kashan, 1, 1, 23-29, (2000)
[8] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, Int. J. general syst., 17, 2-3, 191-209, (1990) · Zbl 0715.04006
[9] Iwinski, T., Algebraic approach to rough sets, Bull. Polish acad. sci. math., 35, 673-683, (1987) · Zbl 0639.68125
[10] Jun, Y.B., Roughness of ideals in BCK-algebras, Sci. math. jpn., 57, 1, 165-169, (2003) · Zbl 1012.06500
[11] R. Kumar, Fuzzy Algebra I, University of Delhi, Publ. Division, 1993
[12] Kuroki, N., Rough ideals in semigroups, Inform. sci., 100, 139-163, (1997) · Zbl 0916.20046
[13] Kuroki, N.; Mordeson, J.N., Structure of rough sets and rough groups, J. fuzzy math., 5, 1, 183-191, (1997) · Zbl 0982.03505
[14] Kuroki, N.; Wang, P.P., The lower and upper approximations in a fuzzy group, Inform. sci., 90, 203-220, (1996) · Zbl 0878.20050
[15] Liu, W.J., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets syst., 8, 133-139, (1982) · Zbl 0488.20005
[16] Mordeson, J.N.; Malik, M.S., Fuzzy commutative algebra, (1998), World Publishing Singapore · Zbl 1026.13002
[17] Nanda, S.; Majumdar, S., Fuzzy rough sets, Fuzzy sets syst., 45, 157-160, (1992) · Zbl 0749.04004
[18] Pawlak, Z., Rough sets, Int. J. inf. comp. sci., 11, 341-356, (1982) · Zbl 0501.68053
[19] Pawlak, Z., Rough sets–theoretical aspects of reasoning about data, (1991), Kluwer Academic Publishing Dordrecht · Zbl 0758.68054
[20] ()
[21] ()
[22] Pomykala, J.; Pomykala, J.A., The stone algebra of rough sets, Bull. Polish acad. sci. math., 36, 495-508, (1988) · Zbl 0786.04008
[23] Rosenfeld, A., Fuzzy groups, J. math. anal. appl., 35, 512-517, (1971) · Zbl 0194.05501
[24] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.