Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. (English) Zbl 1072.35091

The authors study the analytical aspects of the Lengyel-Epstein reaction diffusion system that models the formation of the so-called Turing patterns (or more generally non-constant steady states) in the chlorine dioxide reaction. After recalling some relevant results from their earlier paper, the authors provide a detailed discussion of the global bifurcation structure of the set of the non-constant steady states focusing on the one-dimensional case. The discussed bifurcation theory approach relies on results due to Crandall and Rabinowitz, the Rabinowitz global bifurcation theorem and the Leray-Schauder degree theory. Moreover, the limiting behavior of the solution set is analytically described by an appropriate use of the solution to the corresponding shadow system.


35K57 Reaction-diffusion equations
34C23 Bifurcation theory for ordinary differential equations
35B32 Bifurcations in context of PDEs
92E20 Classical flows, reactions, etc. in chemistry
Full Text: DOI


[1] Callahan, T.K., and Knobloch, E. (1999). Pattern formation in three-dimensional reaction-diffusion systems. Phys. D 132, 339-362. · Zbl 0935.35065
[2] Castets, V., Dulos, E., Boissonade, J., and De Kepper, P. (1990). Experimental evidence of a sustained Turing-type equilibrium chemical pattern. Phys. Rev. Lett. 64, 2953-2956.
[3] Crandall, M., and Rabinowitz, P. (1971). Bifurcation from simple eigenvalues. J. Functional Anal. 8, 321-340. · Zbl 0219.46015
[4] Gierer, A., and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12, 30-39. · Zbl 0297.92007
[5] Judd, S.L., and Silber, M. (2000). Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse. Phys. D 136, 45-65. · Zbl 0947.35082
[6] Keener, J.P. (1978). Activators and inhibitors in pattern formation. Stud. Appl. Math. 59, 1-23. · Zbl 0407.92023
[7] Lengyel, I., and Epstein, I.R. (1991). Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650-652.
[8] Lengyel, I., and Epstein, I.R. (1992). A chemical approach to designing Turing patterns in reaction-diffusion system. Proc. Natl. Acad. Sci. USA 89, 3977-3979. · Zbl 0745.92002
[9] Li, Y., Oslonovitch, J., Mazouz, N., Plenge, F., Krischer, K., and Ertl, G. (2001). Turing-type patterns on electrode surfaces. Science 291, 2395-2398.
[10] Murray, J.D. (1989). Mathematical Biology, Springer-Verlag, Berlin. · Zbl 0682.92001
[11] Ni, W.-M. (1998). Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45, 9-18. · Zbl 0917.35047
[12] Ni, W.-M., Pol?ik, P., and Yanagida, E. (2001). Monotonicity of stable solutions in shadow systems. Trans. Amer. Math. Soc. 353, 5057-5069. · Zbl 0981.35018
[13] Ni, W.-M., and Tang, M. Turing patterns in Lengyel-Epstein system for the CIMA reaction, submitted. · Zbl 1074.35051
[14] Ni, W.-M., Takagi, I., and Yanagida, E. (2001). Stability of least energy patterns of the shadow system for an activator-inhibitor model. Japan J. Ind. Appl. Math. 18, 259-272. · Zbl 1200.35172
[15] Nishiura, Y. (1982). Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal. 13, 555-593. · Zbl 0501.35010
[16] Opial, Z. (1961). Sur les p?riodes des solutions de 1 ’?quation diff?rentielle x? + g(x) = 0. Ann. Polon. Math. 10, 49-72. · Zbl 0096.29604
[17] Rabinowitz, P.H. (1971). Some global results for nonlinear eigenvalue problems. J. Functional Anal. 7, 487-513. · Zbl 0212.16504
[18] Schaaf, R. (1990). Global Solution Branches of Two-point Boundary Value Problems, Lecture Notes in Mathematics, Vol. 1458, Springer-Verlag, Berlin. · Zbl 0780.34010
[19] Shi, J. (2002). Semilinear Neumann boundary value problems on a rectangle. Trans. Amer. Math. Soc. 354, 3117-3154. · Zbl 0992.35031
[20] Takagi, I. (1986). Point-condensation for a reaction-diffusion system. J. Diff. Eqns 61, 208-249. · Zbl 0627.35049
[21] Turing, A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London Ser. B 237, 37-72. · Zbl 1403.92034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.