×

zbMATH — the first resource for mathematics

The time fractional diffusion equation and the advection-dispersion equation. (English) Zbl 1072.35218
Authors’ abstract: “The authors obtain explicit relationships between the time fractional diffusion equation and the advection-dispersion equation in the whole-space with the corresponding problems in the half-space using the Fourier-Laplace transform. Furthermore, they investigate the time fractional advection-dispersion equation in a bounded space domain.”

MSC:
35S30 Fourier integral operators applied to PDEs
26A33 Fractional derivatives and integrals
76R50 Diffusion
35A22 Transform methods (e.g., integral transforms) applied to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nigmatullin, Physica B 123 pp 739– (1984)
[2] DOI: 10.1002/pssb.2221330150
[3] Mainardi, Fractal and Fractional Calin Continuum Mechanics pp 291– (1997)
[4] Caputo, Geophys. J. Roy. Astr. Soc. 13 pp 529– (1967)
[5] DOI: 10.1016/0370-1573(90)90099-N
[6] DOI: 10.1029/2000WR900032
[7] DOI: 10.1029/2000WR900031
[8] DOI: 10.1029/2000WR900409
[9] DOI: 10.1016/S0096-3003(02)00322-3 · Zbl 1053.60064
[10] DOI: 10.1016/S0167-7152(00)00003-1 · Zbl 0970.35174
[11] DOI: 10.1016/0167-2789(94)90254-2 · Zbl 1194.37163
[12] DOI: 10.1016/S0304-4149(99)00053-8 · Zbl 1001.60071
[13] DOI: 10.1063/1.527251 · Zbl 0632.35031
[14] DOI: 10.1023/A:1016539022492 · Zbl 1009.65085
[15] Srivastava, The H-functions of one and two variables with applications (1982) · Zbl 0506.33007
[16] DOI: 10.1029/2001WR001229
[17] DOI: 10.1007/BF02936088 · Zbl 1056.34052
[18] DOI: 10.1016/j.cam.2003.09.028 · Zbl 1036.82019
[19] DOI: 10.1103/PhysRevA.35.3081
[20] DOI: 10.1023/A:1016547232119 · Zbl 1009.82016
[21] Gorenflo, Fract. Calc. Appl. Anal. 1 pp 167– (1998)
[22] DOI: 10.1016/S0377-0427(00)00288-0 · Zbl 0973.35012
[23] DOI: 10.1016/0378-4371(92)90566-9
[24] DOI: 10.1016/S0375-9601(97)00947-X · Zbl 1026.82524
[25] DOI: 10.1007/BF00879562 · Zbl 1213.74005
[26] DOI: 10.1121/1.1903344 · Zbl 0285.73031
[27] DOI: 10.1063/1.528578 · Zbl 0692.45004
[28] DOI: 10.1063/1.166272 · Zbl 0933.37029
[29] Sabatelli, Eur Phys. J. B 27 pp 273– (2002)
[30] DOI: 10.1088/0305-4470/27/10/017 · Zbl 0827.60057
[31] DOI: 10.1016/S0378-4371(02)01048-8 · Zbl 1001.91033
[32] Podlubny, Fractional differential equations (1999)
[33] Mainardi, Fract. Calc. Appl. Anal. 4 pp 153– (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.