×

zbMATH — the first resource for mathematics

Invertible smoothing preconditioners for linear discrete ill-posed problems. (English) Zbl 1072.65057
Summary: The solution of large linear discrete ill-posed problems by iterative methods has recently received considerable attention. This paper presents invertible smoothing preconditioners which are well suited for use with the GMRES, RRGMRES and LSQR methods.

MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
65F35 Numerical computation of matrix norms, conditioning, scaling
PDF BibTeX Cite
Full Text: DOI
References:
[1] Baart, M.L., The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems, IMA J. numer. anal., 2, 241-247, (1982) · Zbl 0484.65021
[2] Å. Björck, L. Eldén, Methods in numerical linear algebra for ill-posed problems, Report, Department of Mathematics, Linköping University, Linköping, Sweden, 1979
[3] Calvetti, D.; Lewis, B.; Reichel, L., GMRES-type methods for inconsistent systems, Linear algebra appl., 316, 157-169, (2000) · Zbl 0963.65042
[4] Calvetti, D.; Lewis, B.; Reichel, L., Restoration of images with spatially variant blur by the GMRES method, (), 364-374
[5] Calvetti, D.; Lewis, B.; Reichel, L., On the choice of subspace for iterative methods for linear discrete ill-posed problems, Internat. J. appl. math. comput. sci., 11, 1069-1092, (2001) · Zbl 0994.65043
[6] Calvetti, D.; Lewis, B.; Reichel, L., GMRES, L-curves and discrete ill-posed problems, Bit, 42, 44-65, (2002) · Zbl 1003.65040
[7] Calvetti, D.; Lewis, B.; Reichel, L., On the regularizing properties of the GMRES method, Numer. math., 91, 605-625, (2002) · Zbl 1022.65044
[8] Delves, L.M.; Mohamed, J.L., Computational methods for integral equations, (1985), Cambridge University Press Cambridge · Zbl 0592.65093
[9] Eldén, L., A weighted pseudoinverse, generalized singular values, and constraint least squares problems, Bit, 22, 487-502, (1982) · Zbl 0509.65019
[10] Engl, H.W.; Hanke, M.; Neubauer, A., Regularization of inverse problems, (1996), Kluwer Academic Dordrecht · Zbl 0859.65054
[11] Hanke, M., Regularization with differential operators: an iterative approach, Numer. functional anal. optim., 13, 523-540, (1992) · Zbl 0769.65027
[12] Hanke, M., Iterative solution of underdetermined linear systems by transformation to standard form, (), 55-63
[13] Hanke, M., Conjugate gradient type methods for ill-posed problems, (1995), Longman Harlow · Zbl 0830.65043
[14] Hanke, M.; Hansen, P.C., Regularization methods for large-scale problems, Surveys math. indust., 3, 253-315, (1993) · Zbl 0805.65058
[15] Hansen, P.C., Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. algorithms, 6, 1-35, (1994) · Zbl 0789.65029
[16] Hansen, P.C., Rank deficient and discrete ill-posed problems, (1998), SIAM Philadelphia, PA
[17] Hestenes, M.R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. res. nat. bur. standards, 49, 409-436, (1952) · Zbl 0048.09901
[18] Paige, C.C.; Saunders, M.A., LSQR: an algorithm for sparse linear equations and sparse least squares, ACM trans. math. software, 8, 43-71, (1982) · Zbl 0478.65016
[19] Paige, C.C.; Saunders, M.A., Algorithm 583 LSQR: sparse linear equations and least squares problems, ACM trans. math. software, 8, 195-209, (1982)
[20] Saad, Y.; Schultz, M.H., GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.