×

Computing spin networks. (English) Zbl 1072.81013

The paper proposes a general setting for the quantum structure of quantum information. The framework is a non-Boolean generalization of the quantum circuit model based on a combinatorial approach to spin networks. After a careful description of computational Hilbert spaces, gates are defined as unitary transformations on these spaces. If the spin network quantum circuit is defined, one deals with semi-classical and SU(2) state sum models on the one hand, and spin network together with topological quantum computation, on the other hand.

MSC:

81P68 Quantum computation
81T45 Topological field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Yu.I. Manin, Classical computing, quantum computing, and Shor’s factoring algorithm. Available from preprint: <quant-ph/9903008>
[2] R. Jozsa, Entanglement and quantum computation. Available from preprint: <quant-ph/9707034>
[3] Kitaev, A., Ann. phys., 303, 2, (2003)
[4] Freedman, M.H.; Kitaev, A.; Wang, Z.; Freedman, M.H.; Larsen, M.; Wang, Z.; Freedman, M.H.; Kitaev, A.; Larsen, M.; Wang, Z., Commun. math. phys., Commun. math. phys., Bull. am. math. soc., 40, 31, (2002)
[5] Ekert, A.; Ericsson, M.; Hayden, P.; Ianamori, H.; Jones, J.A.; Oi, D.K.L.; Vedral, V.; Jones, J.A.; Vedral, V.; Ekert, A.; Castagnoli, G., J. mod. opt., Nature, 403, 869, (2000)
[6] S. Lloyd, Quantum computation with Abelian anyons. Available from preprint: <quant-ph/0004010>
[7] Dennis, E.; Kitaev, A.Yu.; Landahl, A.; Preskill, J., J. math. phys., 43, 4452, (2002)
[8] S.B. Bravyi, A.Yu. Kitaev, Fermionic quantum computation. Available from preprint: <quant-ph/0003137>
[9] Zanardi, P.; Rasetti, M., Phys. lett. A, 264, 94, (1999)
[10] Pachos, J.; Zanardi, P.; Rasetti, M., Phys. rev. A, 61, 010305(R), (2000)
[11] Marzuoli, A.; Rasetti, M., Phys. lett. A, 306, 79, (2002)
[12] A.P. Yutsis, I.B. Levinson, V.V. Vanagas, The Mathematical Apparatus of the Theory of Angular Momentum, Israel Program for Sci. Transl. Ltd., Jerusalem, 1962 · Zbl 0111.42704
[13] L.C. Biedenharn, J.D. Louck, G.-C. Rota (Ed.), The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley, Reading, MA, 1981, Topic 9. Physical Interpretation and Asymptotic (Classical) Limits of the Angular Momentum Functions; Topic 12. Coupling of N Angular Momenta: Recoupling Theory
[14] Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K., Quantum theory of angular momentum, (1988), World Scientific Singapore
[15] Feynman, R.P., Int. J. theor. phys., 21, 467, (1982)
[16] Penrose, R., Angular momentum: an approach to combinatorial space-time, (), 151
[17] S. Garnerone, A. Marzuoli, M. Rasetti, in preparation
[18] Ponzano, G.; Regge, T., Semiclassical limit of racah coefficients, (), 1 · Zbl 0201.30804
[19] Biedenharn, L.C.; Louck, J.D., Angular momentum in quantum physics, theory and applications, () · Zbl 0474.00023
[20] Regge, T., Nuovo cimento, 19, 558, (1961)
[21] Kempe, J.; Bacon, D.; Lidar, D.A.; Whaley, K.B., Phys. rev. A, 63, 042307, (2001)
[22] Fack, V.; Lievens, S.; Van der Jeugt, J., Comp. phys. commun., 119, 99, (1999)
[23] Fack, V.; Lievens, S.; Van der Jeugt, J., Discr. math., 245, 1, (2002)
[24] Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.; Weinfurter, H., Phys. rev. A, 52, 3457, (1995)
[25] Bernstein, E.; Vazirani, U., SIAM J. comput., 26, 1411, (1997)
[26] Moore, C.; Crutchfield, J.P., Theor. comput. sci., 237, 275, (2000)
[27] Aquilanti, V.; Coletti, C., Chem. phys. lett., 344, 601, (2001)
[28] Askey, R., Ortogonal polynomials and special functions, (1975), Society for Industrial and Applied Mathematics Philadelphia, PA
[29] Marzuoli, A.; Rasetti, M., Int. J. quantum infor., 3, 65, (2005)
[30] Lloyd, S., Science, 273, 1073, (1996)
[31] Stanley, R.P., Enumerative combinatorics, vol. 2, (1999), Cambridge University Press Cambridge · Zbl 0928.05001
[32] Kauffman, L.H., Knots and physics, (1991), World Scientific Singapore · Zbl 0749.57002
[33] Ambjorn, J.; Durhuus, B.; Jonsson, T., Quantum geometry, (1997), Cambridge University Press Cambridge
[34] Regge, T.; Williams, R.M., J. math. phys., 41, 3964, (2000)
[35] Carbone, G.; Carfora, M.; Marzuoli, A., Nucl. phys. B, 595, 654, (2001)
[36] V. Aquilanti, private communication
[37] Turaev, V.G.; Viro, O.Ya., Topology, 31, 865, (1992)
[38] Turaev, V.G., Quantum invariants of knots and 3-manifolds, (1994), Walter de Gruyter Berlin · Zbl 0812.57003
[39] Carlip, S., Quantum gravity in 2+1 dimensions, (1998), Cambridge University Press Cambridge · Zbl 0938.83010
[40] Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G., Phys. rep., 209, 129, (1991)
[41] Atiyah, M.F., Publ. math. inst. hautes etudes sci., 68, 175, (1989)
[42] Quinn, F., Lectures on axiomatic topological quantum field theories, () · Zbl 0901.18002
[43] Jones, V., Bull. am. math. soc., 12, 103, (1985)
[44] Witten, E., Commun. math. phys., 121, 351, (1989)
[45] Beckman, D.; Gottesman, D.; Kitaev, A.Yu.; Preskill, J., Phys. rev. D, 65, 065022, (2002)
[46] Jaeger, F.; Vertigen, D.; Welsh, D., Math. proc. Cambridge philos. soc., 108, 35, (1990)
[47] Garey, M.R.; Johnson, D.S., Computers and intractability. A guide to the theory of NP-completeness, (1979), W.H. Freeman New York · Zbl 0411.68039
[48] Deutsch, D.; Barenco, A.; Ekert, A.; Di Vincenzo, D.P., Proc. R. soc. lond. A, Phys. rev. A, 50, 1015, (1995)
[49] Wilczek, F.; Zee, A., Phys. rev. lett., 52, 2111, (1984)
[50] Wu, T.T.; Yang, C.N.; Jackiw, R., (), 12, 3845, (1975), 154 pp
[51] Nakahara, M., Geometry, topology and physics, (1990), IOP Publishing · Zbl 0764.53001
[52] Preskill, J., Fault-tolerant quantum computation, ()
[53] L.H. Kauffman, S.J. Lomonaco, Braiding operators are universal quantum gates. Available from preprint: <quant-ph/0401090>
[54] Fuchs, J.; Schweigert, C., Symmetries, Lie algebras and representations, (1997), Cambridge University Press Cambridge · Zbl 0923.17001
[55] Smorodinskii, Ya.A.; Shelepin, L.A., Sov. phys. usp., 15, 1, (1972)
[56] On-Line Encyclopedia of Integer Sequences, at http://www.research.att.com/njas/sequences/ · Zbl 1274.11001
[57] Buckley, F.; Harari, F., Distance in graphs, (1990), Addison-Wesley Reading, MA
[58] Sleator, D.D.; Tarjan, R.E.; Thurston, W.P., J. am. math. soc., 1, 647, (1988)
[59] Li, M.; Tromp, J.; Zhang, L., J. theor. biol., 182, 463, (1996)
[60] Robinson, D.; Culik, K.; Wood, D., J. combin. theory, Inform. process. lett., 15, 39, (1982)
[61] Pallo, J.M., Inform. process. lett., 73, 87, (2000)
[62] Pallo, J.M., Inform. process. lett., 87, 173, (2003)
[63] Rogers, R.O.; Dutton, R.D., Congr. numer., 120, 103, (1996)
[64] Cleary, S.; Cleary, S.; Tabak, J., Inform. process. lett., Inform. process. lett., 88, 251, (2003)
[65] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang, in: DIMACS Series in Discr. Math. and Theor. Comp. Science, vol. 55, American Mathematical Society, Providence, RI, 2000, p. 125
[66] Majorana, E., Nuovo cimento, 9, 43, (1932)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.