Bolen, Brett; Cavaglià, Marco (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. (English) Zbl 1072.83012 Gen. Relativ. Gravitation 37, No. 7, 1255-1262 (2005). Summary: We extend the derivation of the Hawking temperature of a Schwarzschild black hole via the Heisenberg uncertainty principle to the de Sitter and anti-de Sitter spacetimes. The thermodynamics of the Schwarzschild-(anti-)de Sitter black holes is obtained from the generalized uncertainty principle of string theory and non-commutative geometry. This may explain why the thermodynamics of (anti-)de Sitter-like black holes admits a holographic description in terms of a dual quantum conformal field theory, whereas the thermodynamics of Schwarzschild-like black holes does not. Cited in 19 Documents MSC: 83C57 Black holes 83C47 Methods of quantum field theory in general relativity and gravitational theory Keywords:Black hole; de Sitter spacetime; Uncertainty principle PDF BibTeX XML Cite \textit{B. Bolen} and \textit{M. Cavaglià}, Gen. Relativ. Gravitation 37, No. 7, 1255--1262 (2005; Zbl 1072.83012) Full Text: DOI arXiv OpenURL References: [1] Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) · Zbl 1378.83040 [2] Adler, R.J., Chen, P., Santiago, D.I.: Gen. Rel. Grav. 33, 2101 (2001) [arXiv:gr-qc/0106080] · Zbl 1003.83020 [3] Novikov, I.D., Frolov, V.P.: Physics of Black Holes, Fundamental theories of physics 27, Kluwer Academic, Dordrecht, Netherlands (1989) · Zbl 0688.53034 [4] Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003) [arXiv:hep-th/0106111] · Zbl 1079.83532 [5] Cadoni, M.: Phys. Rev. D 69, 084021 (2004) [arXiv:gr-qc/0311056] [6] Cai, R.G.: Phys. Lett. B 525, 331 (2002) [arXiv:hep-th/0111093] · Zbl 0981.83067 [7] Chen, P., Adler, R.J.: Nucl. Phys. Proc. Suppl. 124, 103 (2003) [arXiv:gr-qc/0205106]; Cavaglià, M., Das, S., Maartens, R.: Class. Quant. Grav. 20, L205 (2003) [arXiv:hep-ph/0305223]; Cavaglià, M., Das, S.: Class. Quant. Grav. 21, 4511 (2004) [arXiv:hep-th/0404050]; Hossenfelder, S., Bleicher, M., Hofmann, S., Ruppert, J., Scherer, S., Stocker, H.: Phys. Lett. B 575, 85 (2003) [arXiv:hep-th/0305262] [8] Maggiore, M.: Phys. Rev. D 49, 5182 (1994) [arXiv:hep-th/9305163]; Maggiore, M.: Phys. Lett. B 319, 83 (1993) [arXiv:hep-th/9309034] [9] Maggiore, M.: Phys. Lett. B 304, 65 (1993) [arXiv:hep-th/9301067]; Scardigli, F.: Phys. Lett. B 452, 39 (1999) [arXiv:hep-th/9904025]; Scardigli, F., Casadio, R.: Class. Quant. Grav. 20, 3915 (2003) [arXiv:hep-th/0307174] [10] Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989); Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 347, 550 (1990); Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 403, 707 (1993). [11] Konishi, K., Paffuti, G., Provero, P.: Phys. Lett. B 234, 276 (1990). [12] Setare, M.R.: Phys. Rev. D 70, 087501 (2004) [arXiv:hep-th/0410044]; Camacho, A.: Gen. Rel. Grav. 34, 1839 (2002) [arXiv:gr-qc/0206006]; Shalyt-Margolin, A.E., Tregubovich, A.Y.: Mod. Phys. Lett. A 19, 71 (2004) [arXiv:hep-th/0311034]; Kalyana Rama, S.: Phys. Lett. B 519, 103 (2001) [arXiv:hep-th/0107255]; Hassan, S.F., Sloth, M.S.: Nucl. Phys. B 674, 434 (2003) [arXiv:hep-th/0204110] [13] Kempf, A.: J. Math. Phys. 35, 4483 (1994) [arXiv:hep-th/9311147]; Kempf, A.: arXiv:hep-th/9405067; Kempf, A.: J. Math. Phys. 38, 1347 (1997) [arXiv:hep-th/9602085]; Hinrichsen, H., Kempf, A.: J. Math. Phys. 37, 2121 (1996) [arXiv:hep-th/9510144] [14] Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-th/9204099]. · Zbl 0968.83514 [15] Cadoni, M., Carta, P.: [arXiv:hep-th/0211018] This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.