×

zbMATH — the first resource for mathematics

Generalized projective synchronization of a unified chaotic system. (English) Zbl 1073.65147
Summary: A simple but efficient control technique of the generalized projective synchronization is applied to a unified chaotic system. Numerical simulations show that this method works very well, which can also be applied to other chaotic systems.

MSC:
65P20 Numerical chaos
37M05 Simulation of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.L., Phys rev lett, 64, 821, (1990)
[2] Kapitaniak, T., Chaos, solitons & fractals, 2, 519, (1992)
[3] Kapitaniak, T., Phys rev E, 50, 1642, (1994)
[4] Stefanski, A.; Kapitaniak, T., Chaos, solitons and fractals, 40, 175, (2003)
[5] González-Miranda, J.M., Phys rev E, 53, R5, (1996)
[6] Mainieri, R.; Rehacek, J., Phys rev lett, 82, 3042, (1999)
[7] Li, Z.; Xu, D., Phys lett A, 282, 175, (1990)
[8] Xu, D.; Li, Z., Chaos, 11, 439, (2001)
[9] Xu, D.; Li, Z., Int J bifurcat chaos, 12, 1395, (2002)
[10] Xu, D.; Chee, C.Y., Phys rev E, 66, 046218, (2002)
[11] Xu, D.; Ong, W.L.; Li, Z., Phys lett A, 305, 167, (2002)
[12] Chee, C.Y.; Xu, D., Phys lett A, 318, 112, (2003)
[13] Xu, D.; Chee, C.Y.; Li, C.P., Chaos, solitons and fractals, 22, 175, (2004)
[14] Afraimovich, V.S.; Verichev, N.N.; Rabinovich, M.I., Izvestiya vysshikh uchebnykh zavedenii radiofizika, 29, 9, 1050, (1986)
[15] Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S.; Abarbanel, H.D.I., Phys rev E, 51, 980, (1995)
[16] Kocarev, L.; Parlitz, U., Phys rev lett, 76, 1816, (1996)
[17] Abarbanel, H.D.I.; Rulkov, N.F.; Sushchik, M.M., Phys rev E, 53, 4528, (1996)
[18] Yan, J.P.; Li, C.P., Chaos, solitons and fractals, 23, 1683, (2005)
[19] Li, C.P.; Chen, G., Chaos, 14, 2, 343, (2004)
[20] Li, C.P.; Xia, X., Chaos, 14, 3, (2004)
[21] Yan JP, Li CP. On generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system. J Shanghai Univ, accepted
[22] Lu, J.; Wu, X.Q.; Lü, J.H., Phys lett A, 305, 365, (2002)
[23] Lu, J.; Tao, C.; Lü, J.H., Chin phys lett, 19, 5, 632, (2002)
[24] Tao, C.H.; Lu, J.A., Acta phys sin, 52, 2, 281, (2003)
[25] Lorenz, E.N., J atmos sci, 20, 130, (1963)
[26] Chen, G.R.; Ueta, T., Int J bifurcat chaos, 9, 1465, (1999)
[27] Li, C.P.; Chen, G., Int J bifurcat chaos, 13, 1609, (2003)
[28] Li, C.P.; Peng, G.J., Chaos, solitons & fractals, 22, 443, (2004)
[29] Lü, J.H.; Chen, G.; Chen, D.; Čelikovshý, S., Int J bifurcat chaos, 12, 2917, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.