×

The stringy \(E\)-function of the moduli space of rank 2 bundles over a Riemann surface of genus 3. (English) Zbl 1074.14029

Summary: We compute the stringy \(E\)-function (or the motivic integral) of the moduli space of rank 2 bundles over a Riemann surface of genus 3. In doing so, we answer a question of Batyrev about the stringy \(E\)-functions of the GIT quotients of linear representations.

MSC:

14H60 Vector bundles on curves and their moduli
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
32G13 Complex-analytic moduli problems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523 – 615. · Zbl 0509.14014
[2] Victor V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 1 – 32. · Zbl 0963.14015
[3] A. Craw. An introduction to motivic integration. Preprint, math.AG/9911179.
[4] Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201 – 232. · Zbl 0928.14004
[5] Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505 – 537. · Zbl 0943.14010
[6] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53 – 94 (French). · Zbl 0689.14012
[7] Richard Earl and Frances Kirwan, The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface, Q. J. Math. 51 (2000), no. 4, 465 – 483. · Zbl 0971.14011
[8] Johannes Huebschmann, Poisson geometry of flat connections for \?\?(2)-bundles on surfaces, Math. Z. 221 (1996), no. 2, 243 – 259. · Zbl 0844.58014
[9] Frances Kirwan, On the homology of compactifications of moduli spaces of vector bundles over a Riemann surface, Proc. London Math. Soc. (3) 53 (1986), no. 2, 237 – 266. · Zbl 0607.14017
[10] Frances Kirwan, On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles, Ark. Mat. 24 (1986), no. 2, 221 – 275. · Zbl 0625.14026
[11] Frances Clare Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), no. 1, 41 – 85. · Zbl 0592.14011
[12] Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. · Zbl 0553.14020
[13] E. Looijenga. Motivic measures. Sém. Bourbaki 1999/2000, Astérisque, No. 276 (2002), 267-297. · Zbl 0996.14011
[14] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. · Zbl 0411.14003
[15] Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345 – 414. · Zbl 0634.14003
[16] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980.
[17] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.