×

Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere. (English) Zbl 1074.81023

The author studies a coupled nonlinear Schroedinger-Maxwell system of equations. In this framework, he is concerned with the existence of semiclassical states and uses a perturbation scheme in a variational setting to study the concentration of the solutions.

MSC:

81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q15 Perturbation theories for operators and differential equations in quantum theory
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1002/cpa.3160120405 · Zbl 0093.10401
[2] DOI: 10.1016/S0294-1449(97)89300-6 · Zbl 1004.37043
[3] Ambrosetti A., Proc. Royal Soc. Edinburgh 128 pp 1131– · Zbl 0928.34029
[4] DOI: 10.1007/s002050050067 · Zbl 0896.35042
[5] DOI: 10.1007/s00220-003-0811-y · Zbl 1072.35019
[6] DOI: 10.1016/S0362-546X(01)00717-9 · Zbl 1018.35021
[7] DOI: 10.1002/cpa.3004 · Zbl 1031.81024
[8] Benci V., Top. Math. Nonlinear Anal. 11 pp 283–
[9] DOI: 10.1007/PL00004759 · Zbl 0930.35168
[10] Beresticky H., Arch. Rat. Mech. Anal. 82 pp 313–
[11] D’Avenia P., Adv. Nonlinear Stud. 2 pp 177–
[12] DOI: 10.1007/BF01189950
[13] DOI: 10.1006/jfan.1996.3085 · Zbl 0887.35058
[14] DOI: 10.1016/0022-1236(86)90096-0 · Zbl 0613.35076
[15] Frölich J., Comm. Math. Phys. 225 pp 223–
[16] B. Gidas, W.M. Ni and L. Nirenberg, Advances in Mathematics Supplementary Studies 7-A, ed. A. Nachbin () pp. 369–402.
[17] DOI: 10.1007/978-3-642-61798-0 · Zbl 0361.35003
[18] DOI: 10.1016/0022-1236(90)90016-E · Zbl 0711.58013
[19] Kwong M. K., Arch. Rat. Mech. Anal. 105 pp 243–
[20] Li Y. Y., Adv. Diff. Eqn. 2 pp 955–
[21] DOI: 10.1007/BF01218621 · Zbl 0693.35132
[22] DOI: 10.1007/BF02096642 · Zbl 0795.35118
[23] DOI: 10.1007/BF01626517 · Zbl 0356.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.