Russian and American put options under exponential phase-type Lévy models. (English) Zbl 1075.60037

Summary: Consider the American put and Russian option with the stock price modeled as an exponential Lévy process. We find an explicit expression for the price in the dense class of Lévy processes with phase-type jumps in both directions. The solution rests on the reduction to the first passage time problem for (reflected) Lévy processes and on an explicit solution of the latter in the phase-type case via martingale stopping and Wiener-Hopf factorization. The same type of approach is also applied to the more general class of regime switching Lévy processes with phase-type jumps.


60G40 Stopping times; optimal stopping problems; gambling theory
91B28 Finance etc. (MSC2000)


Full Text: DOI


[1] Asmussen, S., Exponential families generated by phase-type distributions and other Markov life times, Scand. J. statist., 16, 319-334, (1989) · Zbl 0697.60076
[2] Asmussen, S., Phase-type representations in random walk and queueing problems, Ann. probab., 20, 772-789, (1992) · Zbl 0755.60049
[3] Asmussen, S., Stationary distributions via first passage times, (), 79-102 · Zbl 0866.60077
[4] Asmussen, S., Ruin probabilities, (2000), World Scientific Singapore
[5] Asmussen, S., Matrix-analytic models and their analysis, Scand. J. statist., 27, 193-226, (2000) · Zbl 0959.60085
[6] Asmussen, S.; Kella, O., A multi-dimensional martingale for Markov additive processes and its applications, Adv. appl. probab., 32, 376-393, (2000) · Zbl 0961.60081
[7] Asmussen, S.; Avram, F.; Usabel, M., Erlangian approximations for finite-horizon ruin probabilities, Astin bull., 32, 267-281, (2002) · Zbl 1081.60028
[8] Asmussen, S., Nerman, O., Olsson, M., 1996. Fitting phase-type distributions via the EM algorithm. Scand. J. Statist. 23, 419-441. www.maths.lth.se/matstat/staff/asmus. · Zbl 0898.62104
[9] Avram, F.; Chan, T.; Usabel, M., On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr’s approximation for American puts, Stochastic process. appl., 100, 75-107, (2002) · Zbl 1060.91061
[10] Avram, F., Kyprianou, A.E., Pistorius, M.R.. Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Probab., to appear. · Zbl 1042.60023
[11] Barndorff-Nielssen, O., Processes of normal inverse Gaussian type, Finance stochastic, 2, 41-68, (2000)
[12] Bertoin, J., Lévy processes, (1996), Cambridge University Press Cambridge, MA
[13] Bingham, N.H., Fluctuation theory in continuous time, Adv. appl. probab., 7, 705-766, (1975) · Zbl 0322.60068
[14] Bladt, M., Gonzalez, A., Lauritzen, S.L., 2002. The estimation of phase-type related functionals using Markov chain Monte Carlo methods. Scand. Act. J., to appear. · Zbl 1090.62102
[15] Boyarchenko, S.I., Levendorskiı̆, 2000. Option pricing for truncated Lévy processes. Internat. J. Theoret. Appl. Finance 3, 549-552. · Zbl 0973.91037
[16] Carr, P., Randomization and the American put, Rev. financial stud., 11, 597-626, (1998) · Zbl 1386.91134
[17] Carr, P., Faguet, D., 1994. Fast accurate valuation of American options. Working Paper, Cornell University.
[18] Carr, P., Geman, H., Madan, D.P., Yor, M., 1999. The fine structure of asset returns. J. Business, in press.
[19] Chan, T., Pricing contingent claims on stocks driven by Lévy processes, Ann. appl. probab., 9, 504-528, (1998) · Zbl 1054.91033
[20] Cont, R., Potters, M., Bouchaud, J.-P., 1997. Scaling in stock market data: stable laws and beyond. In: Dubrulle, B., et al. (Eds.), Scale Invariance and Beyond. Springer, Berlin, pp. 75-85. · Zbl 0979.91037
[21] Darling, D.A.; Liggett, T.; Taylor, H.M., Optimal stopping for partial sums, Ann. math. statist., 43, 1363-1368, (1972) · Zbl 0244.60037
[22] Duffie, D.; Harrison, J.M., Arbitrage pricing of Russian options, Ann. appl. probab., 3, 641-652, (1993) · Zbl 0783.90009
[23] Eberlein, E.; Keller, U., Hyperbolic distributions in finance, Bernoulli, 1, 281-299, (1995) · Zbl 0836.62107
[24] Fama, E.F., Mandelbrot and the stable Paretian hypothesis, J. business, 36, 420-429, (1963)
[25] Fama, E.F., Portfolio analysis in a stable Paretian market, Manage. sci., 11, 404-419, (1965) · Zbl 0129.11903
[26] Geman, H., Madan D., Yor, M., 1999. Asset prices are Brownian motion: only in business time. University of Maryland. Preprint. · Zbl 1134.91019
[27] Gerber, H.; Shiu, E., Option pricing by esscher transforms, Trans. soc. actuaries, X LVI, 99-139, (1994)
[28] Graversen, S.E.; Peškir, G., On the Russian optionthe expected waiting time, Theory probab. appl., 24, 416-425, (1997) · Zbl 0924.60012
[29] Guo, X., An explicit solution to an optimal stopping problem with regime switching, J. appl. probab., 38, 464-481, (2001) · Zbl 0988.60038
[30] Jacod, J.; Shiryaev, A.N., Limit theorems for stochastic processes, (1987), Springer Berlin · Zbl 0635.60021
[31] Kella, O.; Whitt, W., Useful martingales for stochastic storage with Lévy input, J. appl. probab., 29, 396-403, (1992) · Zbl 0761.60065
[32] Kemperman, J.H.B., The passage problem for a stationary Markov chain, (1961), The University of Chicago Press Chicago
[33] Koponen, I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197-1199.
[34] Kou, S., 2000. Pricing options with jump-diffusion models. Columbia University. Preprint.
[35] Kyprianou, A.E.; Pistorius, M.R., Perpetual options through fluctuation theory, Ann. appl. probab., 13, 1077-1098, (2003) · Zbl 1039.60044
[36] Madan, D.P.; Carr, P.; Chang, E., The variance gamma process and option pricing model, Eur. finance rev., 2, 79-105, (1998) · Zbl 0937.91052
[37] Mandelbrot, B., New methods in statistical economics, J. political econom., 61, 421-440, (1963)
[38] Mandelbrot, B., The variation of certain speculative prices, J. business, 36, 394-419, (1963)
[39] Mordecki, E., 2001. Ruin probabilities for Lévy processes with mixed-exponential negative jumps. Theory Probab. Appl. Preprint in press.
[40] Mordecki, E., Optimal stopping and perpetual options for Lévy processes, Finance stochastic, 6, 473-493, (2002) · Zbl 1035.60038
[41] Mordecki, E.; Moreira, W., Russian options for a diffusion with negative jumps, Publ. mat. del Uruguay, 9, 37-51, (2001)
[42] Neuts, M., Matrix-geometric solutions in stochastic models, (1981), Johns Hopkins University Press
[43] Peškir, G.; Shiryaev, A.N., Sequential testing problems for Poisson processes, Ann. statist., 28, 837-859, (2000) · Zbl 1081.62546
[44] Ross, S.M., Approximating transition probabilities in continuous time Markov chains, Prob. eng. inf. sci., 3, 251-264, (1987) · Zbl 1133.60344
[45] Shepp, L.; Shiryaev, A.N., The Russian optionreduced regret, Ann. appl. probab., 3, 603-631, (1993) · Zbl 0783.90011
[46] Shepp, L.; Shiryaev, A.N., A new look at the pricing of the Russian option, Theory probab. appl., 39, 103-120, (1994) · Zbl 0834.60072
[47] Shiryaev, A.N.; Kabanov, Yu.; Kramkov, D.O.; Melnikov, A.V., Towards the theory of options of both American and European types II. continuous time, Theory probab. appl., 39, 61-102, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.