\(C^2\) quadratic trigonometric polynomial curves with local bias. (English) Zbl 1075.65024

In seiner Arbeit “Piecewise quadratic trigonometric polynomial curves” [Math. Comput. 72, No. 243, 1369–1377 (2003; Zbl 1072.65019)] entwickelte der Autor \(C^2\)-stetige quadratische trigonometrische polynomiale Kurven. Die vorliegende Arbeit bringt durch Einführung lokaler Formparameter in den Basisfunktionen eine Erweiterung dieses Kurventyps. Damit ergeben sich zusätzliche Möglichkeiten bei der Kurvenmodellierung. Die Basisfunktionen selbst sind quadratische trigonometrische Polynome. In einem Knoten der Multiplizität \(k\) \((k= 1,2,3)\) erweisen sich die Basisfunktionen sowie die trigonometrischen polynomialen Kurven als \(C^2\)-stetig für \(k= 1\), stetig für \(k= 2\) und unstetig für \(k= 3\). Weitere Kurveneigenschaften werden hergeleitet und durch Figuren illustriert. Als besonders wertvolle Eigenschaft zeigt sich, dass die lokalen Formparameter lediglich zwei benachbarte Kurvensegmente beeinflussen. Abschließend werden die quadratischen trigonometrischen Bézierkurven als spezielle quadratische trigonometrische polynomiale Kurven dargestellt.


65D17 Computer-aided design (modeling of curves and surfaces)
65D07 Numerical computation using splines


Zbl 1072.65019
Full Text: DOI


[1] Barsky, B.A., Local control of bias and tension, ACM trans. graph., 2, 109-134, (1983) · Zbl 0584.65004
[2] Barsky, B.A., Computer graphics and geometric modelling using beta-spline, (1988), Springer Heidelberg
[3] Farin, G., NURBS curves and surfaces, (1995), A. K. Peter Wellesley, MA · Zbl 0835.65020
[4] Gregory, J.A.; Sarfraz, M., A rational cubic spline with tension, Comput. aided geom. design, 9, 1-13, (1990) · Zbl 0717.65003
[5] Han, X., Quadratic trigonometric polynomial curves with a shaper parameter, Comput. aided geom. design, 19, 503-512, (2002) · Zbl 0998.68187
[6] Han, X., Piecewise quadratic trigonometric polynomial curves, Math. comp., 72, 1369-1377, (2003) · Zbl 1072.65019
[7] Han, X., Cubic trigonometric polynomial curves with a shaper parameter, Comput. aided geom. design, 21, 535-548, (2004) · Zbl 1069.42500
[8] Joe, B., Multiple-knot and rational cubic beta-spline, ACM trans. graph., 8, 100-120, (1989) · Zbl 0746.68096
[9] Joe, B., Quartic beta-splines, ACM trans. graph., 9, 301-337, (1990) · Zbl 0729.68086
[10] Koch, P.E., Multivariate trigonometric B-splines, J. approx. theory, 54, 162-168, (1988) · Zbl 0671.41006
[11] Koch, P.E.; Lyche, T.; Neamtu, M.; Schumaker, L.L., Control curves and knot insertion for trigonometric splines, Adv. comp. math., 3, 405-424, (1995) · Zbl 0925.65251
[12] Lyche, T.; Winther, R., A stable recurrence relation for trigonometric B-splines, J. approx. theory, 25, 266-279, (1979) · Zbl 0414.41005
[13] Peña, J.M., Shape preserving representations for trigonometric polynomial curves, Comput. aided geom. design, 14, 5-11, (1997) · Zbl 0900.68417
[14] Piegl, L.; Tiller, W., The NURBS book, (1995), Springer New York · Zbl 0828.68118
[15] Walz, G., Some identities for trigonometric B-splines with application to curve design, Bit, 37, 189-201, (1997) · Zbl 0866.41010
[16] Walz, G., Trigonometric Bézier and Stancu polynomials over intervals and triangles, Comput. aided geom. design, 14, 393-397, (1997) · Zbl 0906.68167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.