×

zbMATH — the first resource for mathematics

The tanh function method for solving some important non-linear partial differential equations. (English) Zbl 1075.65125
Summary: Exact solutions of some important nonlinear partial differential equations in one and two dimensions are obtained using the tanh function method. The efficiency of the method is demonstrated by applying it to a variety of selected equations.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mitchell A. R., The Finite Difference Method In Partial Equations (1980) · Zbl 0417.65048
[2] Adomian G., Solving Frontier Problems of Physics: The Decomposition Method (1994) · Zbl 0802.65122
[3] Parkes E. J., Computer Physics Communications 98 pp 288– (1998) · Zbl 0948.76595
[4] Khater A. H., Chaos, Solitons & Fractals 14 pp 513– (2002) · Zbl 1002.35066
[5] Fan E., Physics Letters A 277 pp 212– (2000) · Zbl 1167.35331
[6] Fan E., Zeitschrift für Naturforschung A 56 pp 312– (2001)
[7] Elwakil S. A., Physics Letters A 299 pp 179– (2002) · Zbl 0996.35043
[8] Gao Y. T., Computer Physics Communications 133 pp 158– (2001) · Zbl 0976.65092
[9] Tian B., Zeitschrift für Naturforschung A 57 pp 39– (2002)
[10] Tang X.-Y., Chaos, Solitons & Fractals 14 pp 1451– (2002) · Zbl 1037.35062
[11] Tang X. -Y., Physical Review E 66 pp 46601– (2002)
[12] Gardner L. R.T., Journal of Computational Physics 101 pp 218– (1990) · Zbl 0759.65086
[13] Zaki S. I., Computer Methods in Applied Mechanics and Engineering 189 pp 587– (2000) · Zbl 0963.76057
[14] Zaki S. I., Computer Methods in Applied Mechanics and Engineering 190 pp 4881– (2001) · Zbl 1011.76048
[15] Raslan, K. R. 1999. ”Numerical methods for partial differential equations”. Cairo: Al-Azhar University. Ph.D. Thesis
[16] Abdulloev Kh. O., Physics Letters 56 pp 427– (1976)
[17] Elibeck J. C., Journal of Computational Physics 23 pp 63– (1977) · Zbl 0361.65100
[18] Gardner L. R.T., Journal of Computational Physics 91 pp 441– (1990) · Zbl 0717.65072
[19] Jain P. C., Communications on Numerical Methods in Engineering 9 pp 587– (1993) · Zbl 0777.76049
[20] Gardner L. R.T., Communications on Numerical Methods in Engineering 12 pp 795– (1996) · Zbl 0867.76040
[21] Saki S. I., Computational Physics Communications 138 pp 80– (2001) · Zbl 0984.65103
[22] Whitham G. B., Linear and Nonlinear Waves (1974) · Zbl 0373.76001
[23] Rizun V. I., PMM Journal of Applied Mathematics 39 pp 524– (1976) · Zbl 0342.73024
[24] Fried J. J., Advances in Hydroscience 7 pp 169– (1971)
[25] Fletcher C. J., Journal of Computational Physics 51 pp 159– (1983) · Zbl 0525.65077
[26] Ten Thije Boonkkamp J. H.M., Applied Numerical Mathematics 3 pp 183– (1987) · Zbl 0621.65111
[27] Arminjon P., Computer Methods in Applied Mechanics and Engineering 19 (3) pp 351– (1979) · Zbl 0414.73067
[28] Jain P. C., Indian Journal of Pure and Applied Mathematics 10 pp 1545– (1979)
[29] Jain P. C., Computation and Mathematics with Applications 5 pp 179– (1979) · Zbl 0421.65063
[30] El-Zoheiry H., Proceedings of the 2nd International Conference on Engineering, Mathematics and Physics, Cairo University 3 pp 363–
[31] El-Naggar B. B., Alexandria Engineering Journal 36 pp 19– (1997)
[32] Radwan S. F., Journal of Nonlinear Mathematical Physics 6 pp 13– (1999) · Zbl 0970.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.