Some problems in actuarial finance involving sums of dependent risks. (English) Zbl 1076.62558

Summary: A trend in actuarial finance is to combine technical risk with interest risk. If \(Y_t\), \(t = 1,2,...\) denotes the time-value of money (discount factors at time \(t\)) and \(X_t\) the stochastic payments to be made at time \(t\), the random variable of interest is often the scalar product of these two random vectors \(V=\sum X_t Y_t\). The vectors \(\overset \rightharpoonup X\) and \(\overset\rightharpoonup Y\) are supposed to be independent, although in general they have dependent components. The current insurance practice based on the law of large numbers disregards the stochastic financial aspects of insurance. On the other hand, introduction of the variables \(Y_1, Y_2,...\). to describe the financial aspects necessitates estimation or knowledge of their distribution function.
We investigate some statistical models for problems of insurance and finance, including Risk Based Capital/Value at Risk, Asset Liability Management, the distribution of annuities, cash flow evaluations (in the framework of pension funds, embedded value of a portfolio, Asian options) and provisions for claims incurred, but not reported (IBNR).


62P05 Applications of statistics to actuarial sciences and financial mathematics
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI


[1] DOI: 10.1016/0167-6687(83)90014-8 · Zbl 0542.62089
[2] COX J.C., Econometrica 53 pp 385– (1985)
[3] 3G. DALL’AGLIO, S. KOTZ, and G. SALINETTI(1991 ),Advances in probability distributions with given marginals; beyond the copulas, Kluwer Academic Publishers, Dordrecht.
[4] DOI: 10.1016/0167-6687(94)00004-2 · Zbl 0796.62092
[5] DOI: 10.1016/0167-6687(95)00027-5 · Zbl 0853.62078
[6] DUFRESNE D., Scandinavian Actuarial Journal 9 pp 39– (1990) · Zbl 0743.62101
[7] GEMAN E, Journal of Mathematical Finance 3 pp 349– (1993)
[8] DOI: 10.1063/1.522587 · Zbl 0294.70011
[9] 9M. J. GOOVAERTS, R. KAAS, A. E. VANHEERWAARDEN, and T. BAUWELINCKX(1990 ),Effective actuarial methods; North-Holland, Amsterdam.
[10] DOI: 10.1016/S0167-6687(99)00002-5 · Zbl 0942.60008
[11] GOOVAERTS M. J., Journal of Risk and Insurance 67 pp 1– (2000)
[12] DOI: 10.1016/S0167-6687(99)00008-6 · Zbl 0949.62087
[13] GROSCHE Ch., Journal of Mathematical Physics 35 pp 2354– (1994)
[14] HARRISON J., Journal of Economic Theory 20 pp 381– (1979)
[15] JACQUES M., ASTIN Bulletin 16 pp 165– (1996)
[16] 16R. KAAS, A. E. VANHEERWAARDEN, and M. J. GOOVAERTS(1994 ), Ordering of actuarial risks, Institute of Actuarial Science and Econometrics, University of Amsterdam.
[17] DOI: 10.1016/S0167-6687(00)00060-3 · Zbl 0989.60019
[18] DOI: 10.1016/0167-6687(94)90789-7 · Zbl 0818.62093
[19] DOI: 10.1016/S0167-6687(97)00013-9 · Zbl 0903.60069
[20] NELDER J. A., Journal of the Royal Statistical Society A 135 pp 370– (1972)
[21] DOI: 10.1016/S0167-6687(00)00060-3 · Zbl 0989.60019
[22] TAYLOR G. C., ASTIN Bulletin pp 219– (1977)
[23] 23G. C. TAYLOR(1986 ),Claims reserving in non-life insurance, North-Holland, Amsterdam. · Zbl 0584.62171
[24] YOR M., Advances in Applied Probability 24 pp 509– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.