×

zbMATH — the first resource for mathematics

A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems. (English) Zbl 1076.74056
Summary: We give a space-time Galerkin finite element discretisation of the quasistatic compressible linear viscoelasticity problem as described by an elliptic partial differential equation with a fading-memory Volterra integral. The numerical scheme consists of a continuous Galerkin approximation in space based on piecewise polynomials of degree \(p>0\) \((cG(p))\), with a discontinuous Galerkin piecewise constant \((dG(0))\) or linear \((dG(1))\) approximation in time. A posteiori Galerkin error estimates are derived by exploiting the Galerkin framework and optimal stability estimates for a related dual backward problem. The a posteriori error estimates are quite flexible; strong \(L_p\)-energy norms of the errors are estimated using time derivatives of the residual terms when the data are smooth, while weak-energy norms are used when the data are non-smooth (in time). We also give upper bounds on the \(dG(0)cG(1)\) a posteriori error estimates which indicate optimality. However, a complete analysis is not given.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74D05 Linear constitutive equations for materials with memory
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alnsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, (2000), Wiley
[2] Asadzadeh, M.; Eriksson, K., On adaptive finite element methods for Fredholm integral equations of the second kind, SIAM J. numer. anal, 31, 831-855, (1994) · Zbl 0814.65134
[3] Aziz, A.K.; Liu, J.-L., A Galerkin method for the forward – backward heat equation, Math. comp, 56, 35-44, (1991) · Zbl 0718.65068
[4] Aziz, A.K.; Monk, P., Continuous finite elements in space and time for the heat equation, Math. comp, 52, 255-274, (1989) · Zbl 0673.65070
[5] Bangerth, W.; Rannacher, R., Finite element approximation of the acoustic wave equation: error control and mesh refinement, East – west J. numer. math, 7, 4, 263-282, (1999) · Zbl 0948.65098
[6] D.M. Bedivan, G.J. Fix, Least squares methods for Volterra equations and generalizations. Department of Mathematics, University of Texas at Arlington, Texas · Zbl 0931.65131
[7] Bedivan, D.M.; Fix, G.J., Analysis of finite element approximation and quadrature of Volterra integral equations, Numer. methods partial diff. eqs, 13, 663-672, (1997) · Zbl 0889.65138
[8] Buch, M.; Idesman, A.; Nlekamp, R.; Stein, E., Finite elements in space and time for parallel computing of viscoelastic deformation, Comput. mech, 24, 386-395, (1999) · Zbl 0971.74067
[9] Clarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam
[10] Delfour, M.; Hager, W.; Trochu, F., Discontinuous Galerkin methods for ordinary differential equations, Math. comp, 36, 455-473, (1981) · Zbl 0469.65053
[11] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, (), 105-158 · Zbl 0829.65122
[12] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Computational differential equations, (1996), Cambridge University Press
[13] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems. I: a linear model problem, SIAM J. numer. anal, 28, 43-77, (1991) · Zbl 0732.65093
[14] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems. II: optimal error estimates in L∞L2 and L∞L∞, SIAM J. numer. anal, 32, 706-740, (1995) · Zbl 0830.65094
[15] Estep, D., A posteriori error bounds and global error control for approximation of ordinary differential equations, SIAM J. numer. anal, 32, 1-48, (1995) · Zbl 0820.65052
[16] Estep, D.; French, D., Global error control for the continuous Galerkin finite element method for ordinary differential equations, M^2an, 28, 815-852, (1994) · Zbl 0822.65054
[17] Ferry, J.D., Viscoelastic properties of polymers, (1970), Wiley
[18] I. Fried, Finite element analysis of time dependent phenomena, Tech. Rep. Institut für Statik und Dynamik Luft-Und Raumfahrtkonstruktionen, Universitat Stuttgärt, 1968 · Zbl 0179.55001
[19] Golden, J.M.; Graham, G.A.C., Boundary value problems in linear viscoelasticity, (1988), Springer-Verlag · Zbl 0651.73011
[20] D.C. Handscombe, Error of linear interpolation on a triangle, Tech. Rep. Oxford University Computing Laboratory, 1995, Tech. Rep. NA 95/09
[21] Hulme, B.L., Discrete Galerkin and related one-step methods for ordinary differential equations, Math. comp, 26, 881-891, (1972) · Zbl 0272.65056
[22] Hulme, B.L., One-step piecewise polynomial Galerkin methods for initial value problems, Math. comp, 26, 415-426, (1972) · Zbl 0265.65038
[23] Idesman, A.; Niekamp, R.; Stein, E., Finite element methods in space and time for generalized viscoelastic Maxwell model, J. comput. mech, 27, 49-60, (2001) · Zbl 1007.74074
[24] Jamet, P., Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J. numer. anal, 15, 912-928, (1978) · Zbl 0434.65091
[25] Johnson, A.R., Modeling viscoelastic materials using internal variables, Shock vibrat. digest, 31, 91-100, (1999)
[26] A.R. Johnson, A viscoelastic hybrid shell finite element, in: Whiteman, J.R. (Ed.), The Mathematics of Finite Elements and Applications, X. MAFELAP, 1999, pp. 87-96
[27] Johnson, A.R.; Tessler, A., A viscoelastic high order beam finite element, (), 333-345 · Zbl 0893.73064
[28] Johnson, C., Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. methods appl. mech. engrg, 107, 117-129, (1993) · Zbl 0787.65070
[29] Johnson, C.; Hansbo, P., Adaptive finite element methods in computational mechanics, Comput. methods appl. mech. engrg, 101, 143-181, (1992) · Zbl 0778.73071
[30] Lockett, F.J., Nonlinear viscoelastic solids, (1972), Academic Press · Zbl 0333.73034
[31] M.J. Ludwlg, Finite element error estimation and adaptivity for problems of elasticity. Ph.D. thesis. Brunel University, England, 1998. Available from <www.brunel.ac.uk/ icsrbicm>
[32] Oden, J.T., A general theory of finite elements. II: applications, Int. J. numer. methods engrg, 1, 247-259, (1969) · Zbl 0263.73048
[33] Oden, J.T.; Prudhomme, S., Goal-oriented error estimation and adaptivity for the finite element method, Comput. math. appl, 41, 735-756, (2001) · Zbl 0987.65110
[34] J.T. Oden, S. Prudhomme, Adaptive modeling in computational mechanics, Tech. Rep. TICAM, University of Texas at Austin, 2002. Available from <www.ticam.utexas.edu/reports/>
[35] Oden, J.T.; Wellford, L.C., Discontinuous finite element approximations for the analysis of acceleration waves in elastic solids, (), 269-284
[36] Oden, J.T.; Wellford, L.C., A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. part I: variational theory, Comput. methods appl. mech. engrg, 8, 1-16, (1976) · Zbl 0341.73042
[37] Oden, J.T.; Wellford, L.C., A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. part II: accuracy and convergence, Comput. methods appl. mech. engrg, 8, 17-36, (1976) · Zbl 0341.73043
[38] R. Rannacher, The dual-weighted-residual method for error control and mesh adaptation infinite, element methods, in: Whiteman, J.R. (Ed.), The Mathematics of Finite Elements and Applications, X. MAFELAP, pp. 97-116 · Zbl 0959.65117
[39] Scott, L.R.; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. comp, 54, 483-493, (1990) · Zbl 0696.65007
[40] Shaw, S.; Whiteman, J.R., Discontinuous Galerkin method with a posteriori Lp(0,ti) error estimate for second-kind Volterra problems, Numer. math, 74, 361-383, (1996) · Zbl 0857.65144
[41] Shaw, S.; Whiteman, J.R., Applications and numerical analysis of partial differential Volterra equations: a brief survey, Comput. methods appl. mech. engrg, 150, 397-409, (1997) · Zbl 0907.65146
[42] Shaw, S.; Whiteman, J.R., Negative norm error control for second-kind convolution Volterra equations, Numer. math, 85, 329-341, (2000) · Zbl 0955.65094
[43] Shaw, S.; Whiteman, J.R., Numerical solution of linear quasistatic hereditary viscoelasticity problems, SIAM J. numer. anal, 38, 80-97, (2000) · Zbl 0991.74076
[44] S. Shaw, J.R. Whiteman, Optimal long-time Lp(0,T) data stability and semidiscrete error estimates for the Volterra formulation of the linear quasistatic viscoelasticity problem, Numer. Math. 88 (2001) 743-770 (BICOM Tech. Rep. 98/7). Available from <www.brunel.ac.uk/ icsrbicm> · Zbl 1002.74020
[45] S. Shaw, J.R. Whiteman, Lp(0,t) error control using the derivative of the residual for a finite element approximation of a second-kind Volterra equation. BICOM TR03/1, 2003. Available from <www.brunel.ac.uk/ icsrbicm>
[46] S. Shaw, J.R. Whiteman, A posteriori error estimates for space – time finite element approximation of quasistatic hereditary linear viscoelasticity problems. BICOM TR03/2, 2003. Available from <www.brunel.ac.uk/ icsrbicm> · Zbl 1076.74056
[47] E. Süli, P. Houston, Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity, Tech. Rep. Numerical Analysis Group, Oxford University Computing Laboratory, OX1 3QD, England, 1996
[48] Verfürth, R., A review of A posteriori error estimation and adaptive mesh-refinement techniques, (1996), Wiley-Teubner · Zbl 0853.65108
[49] Zienkiewicz, O.C., A new look at the newmark, houbolt and other time stepping formulas. A weighted residual approach, Earthquake engrg. struct. dynam, 5, 413-418, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.