×

zbMATH — the first resource for mathematics

Ghost fluid method for strong shock impacting on material interface. (English) Zbl 1076.76592
Summary: It is found that the original ghost fluid method (GFM) as put forth by R. P. Fedkiw et al. [J. Comput. Phys. 152, 457–492 (1999; Zbl 0957.76052)] does not work consistently and efficiently using isentropic fix when applied to a strong shock impacting on a material interface. In this work, the causes for such inapplicability of the original GFM are analysed and a modified GFM is proposed and developed for greater robustness and consistency. Numerical tests also show that the modified GFM has the property of reduced conservation error and is less problem-related.

MSC:
76N99 Compressible fluids and gas dynamics
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abd-El-Fattah, A.M.; Henderson, L.F., Shock waves at a slow – fast gas interface, J. fluid mech., 89, 79-95, (1978)
[2] Abd-El-Fattah, A.M.; Henderson, L.F., Shock waves at a fast – slow gas interface, J. fluid mech., 86, 15-32, (1978)
[3] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach, J. comp. phys., 125, 150-160, (1996) · Zbl 0847.76060
[4] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. comp. phys., 169, 594-623, (2001) · Zbl 1033.76029
[5] Ball, G.J.; Howell, B.P.; Leighton, T.G.; Schofield, M.J., Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation, Shock waves, 10, 265-276, (2000) · Zbl 0980.76090
[6] Cocchi, J.-P.; Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J. comp. phys., 137, 265-298, (1997) · Zbl 0934.76055
[7] Glass, I.I.; Sislian, J.P., Nonstationary flow and shock waves, (1994), Oxford Science
[8] Glimm, J.; Grove, J.W.; Li, X.L.; Shyue, K.-M.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J. sci. comput., 19, 703-727, (1998) · Zbl 0912.65075
[9] Glimm, J.; Xia, L.; Liu, Y.; Zhao, N., Conservative front tracking and level set algorithms, Pnas, 98, 14198-14201, (2001) · Zbl 1005.65091
[10] Grove, J.; Menikoff, R., Anomalous reflection of a shock wave at a fluid interface, J. fluid mech., 219, 313-336, (1990)
[11] Falcovitz, J.; Birman, A., A singularities tracking conservation laws scheme for compressible duct flows, J. comp. phys., 115, 431-439, (1994) · Zbl 0813.76059
[12] Fedkiw, R.P.; Marquina, A.; Merriman, B., An isobaric fix for the overheating problem in multimaterial compressible flows, J. comp. phys., 148, 545-578, (1999) · Zbl 0933.76075
[13] Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. comp. phys., 152, 457-492, (1999) · Zbl 0957.76052
[14] Fedkiw, R.P.; Aslam, T.; Xu, S., The ghost fluid method for deflagration and detonation discontinuities, J. comp. phys., 154, 393-427, (1999) · Zbl 0955.76071
[15] Fedkiw, R.P., Coupling an eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. comp. phys., 175, 200-224, (2002) · Zbl 1039.76050
[16] Hilditch, J.; Colella, P., A front tracking method for compressible flames in one dimension, SIAM J. sci. comput., 16, 755-772, (1995) · Zbl 0829.76063
[17] Jenny, P.; Muller, B.; Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. comp. phys., 132, 91-107, (1997) · Zbl 0879.76059
[18] Karni, S., Multi-component flow calculations by a consistent primitive algorithm, J. comp. phys., 112, 31-43, (1994) · Zbl 0811.76044
[19] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. comp. phys., 113, 134-147, (1994) · Zbl 0809.76064
[20] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flow, J. comp. phys., 95, 31-43, (1991) · Zbl 0725.76090
[21] Liu, T.G.; Khoo, B.C.; Yeo, K.S., The simulation of compressible multi-medium flow. part I: A new methodology with applications to 1D gas – gas and gas – water cases, Comp. fluids, 30, 3, 291-314, (2001) · Zbl 1052.76046
[22] Liu, T.G.; Khoo, B.C.; Yeo, K.S., The simulation of compressible multi-medium flow. part II: applications to 2D underwater shock refraction, Comp. fluids, 30, 3, 315-337, (2001) · Zbl 1052.76046
[23] T.G. Liu, B.C. Khoo, K.S. Yeo, C. Wang, Shock loading in the presence of free surface and cavitation, in: The 23rd International Symposium on Shock Waves, Arlington, TX, USA, July 23-27, 2001; Int. J. Numer. Meth. Eng. (accepted)
[24] Nguyen, D.Q.; Fedkiw, R.P.; Kang, M., A boundary condition capturing method for incompressible flame discontinuities, J. comp. phys., 172, 71-78, (2001) · Zbl 1065.76575
[25] D.Q. Nguyen, F. Gibou, R. Fedkiw, A fully conservative ghost fluid method and stiff detonation waves, in: The 12th International Detonation Symposium, San Diego, CA, 2002
[26] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comp. phys., 114, 146-159, (1994) · Zbl 0808.76077
[27] Unverdi, S.O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. comp. phys., 100, 25-37, (1992) · Zbl 0758.76047
[28] Zhang, Y.; Yeo, K.S.; Khoo, B.C.; Wang, C., 3D jet impact and toroidal bubbles, J. comp. phys., 166, 336-360, (2001) · Zbl 1030.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.