×

zbMATH — the first resource for mathematics

Effect of diffusion on a two-species eco-epidemiological model. (English) Zbl 1076.92054
Summary: This paper deals with the stabilizing effect of diffusion on a prey-predator system where the prey population is infected by a microparasite. The predator functional response is a concave-type function. Conditions for the local as well as global stability of the model without diffusion are derived in terms of system parameters. It is also shown that an unstable equilibrium of the model without diffusion can be made stable by increasing the diffusion coefficients appropriately.

MSC:
92D40 Ecology
92D30 Epidemiology
35B35 Stability in context of PDEs
35Q80 Applications of PDE in areas other than physics (MSC2000)
34D20 Stability of solutions to ordinary differential equations
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1098/rspa.1927.0118 · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[2] Hethcote HW, Springer 100 (1994)
[3] Anderson RM, Oxford University (1991)
[4] Bailey NJT, Griffin (1975)
[5] Diekmann O, Cambridge University (1994)
[6] DOI: 10.1098/rstb.1986.0072 · doi:10.1098/rstb.1986.0072
[7] DOI: 10.1086/415837 · doi:10.1086/415837
[8] DOI: 10.1016/0025-5564(90)90001-F · Zbl 0698.92024 · doi:10.1016/0025-5564(90)90001-F
[9] DOI: 10.1007/BF00276947 · Zbl 0716.92021 · doi:10.1007/BF00276947
[10] Holmes JC, Zoological Journal of the Linnean Society 51 pp 123– (1972)
[11] DOI: 10.1016/S0303-2647(98)00022-7 · doi:10.1016/S0303-2647(98)00022-7
[12] DOI: 10.1142/S0218339003000634 · Zbl 1041.92034 · doi:10.1142/S0218339003000634
[13] DOI: 10.1016/S0025-5564(01)00049-9 · Zbl 0978.92031 · doi:10.1016/S0025-5564(01)00049-9
[14] DOI: 10.1006/jmaa.2001.7514 · Zbl 0967.92017 · doi:10.1006/jmaa.2001.7514
[15] Peterson RO, Swedish Wildlife Research Supplement 1 pp 771– (1987)
[16] DOI: 10.2307/5230 · doi:10.2307/5230
[17] Ricklefs RE Miller GL 1999 Ecology (New York: W.H. Freeman)
[18] DOI: 10.1016/0025-5564(84)90032-4 · Zbl 0534.92026 · doi:10.1016/0025-5564(84)90032-4
[19] DOI: 10.1090/S0002-9939-1986-0822433-4 · doi:10.1090/S0002-9939-1986-0822433-4
[20] DOI: 10.1017/CBO9780511608520 · Zbl 1060.92058 · doi:10.1017/CBO9780511608520
[21] Dean MM 1975Stability of Reactions and Transport Processes(Englewood Cliffs, NJ: Prentice-Hall)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.