The central limit theorem for stationary Markov chains under invariant splittings. (English) Zbl 1077.60023

The authors formulate a new sufficient condition for the central limit theorem (CLT) and give a short survey of related results on the CLT for general not necessarily Harris recurrent chains. Furthermore, Markov operators are considered which admit invariant orthogonal splittings of the space of square-integrable functions. The authors show how conditions for the CLT can be improved if this additional structure is taken into account. Finally they give examples of this situation, namely endomorphisms of compact Abelian groups and random walks on compact homogeneous spaces.


60F05 Central limit and other weak theorems
60J05 Discrete-time Markov processes on general state spaces
Full Text: DOI


[1] Borodin A. N., Trudy Mat. Inst. Steklov. 195, in: Limit Theorems for Functionals of Random Walks (1995)
[2] DOI: 10.1007/s004400050160 · Zbl 0935.60012
[3] Derriennic Y., C. R. Acad. Sci. Paris Sér. I Math. 323 pp 1053–
[4] DOI: 10.1007/PL00008769 · Zbl 04564036
[5] DOI: 10.1007/BF02784121 · Zbl 0988.47009
[6] DOI: 10.1007/s004400200215 · Zbl 1012.60028
[7] DOI: 10.1007/BF02764076 · Zbl 1005.37005
[8] Dunkl C. F., Topics in Harmonic Analysis (1971) · Zbl 0227.43001
[9] D. Dürr and S. Goldstein, Stochastic Processes – Mathematics and Physics, Lecture Notes in Math. 1158 (Springer, 1984) pp. 104–118.
[10] Gel’fand I. M., Representation Theory and Automorphic Functions (1969)
[11] Gordin M., Dokl. Akad. Nauk SSSR 239 pp 766–
[12] DOI: 10.1007/BF01210789 · Zbl 0588.60058
[13] V. P. Leonov, Some Applications of Higher Cumulants to the Theory of Stationary Random Processes (Nauka, 1964) pp. 1–67.
[14] Maxwell M., Ann. Probab. 28 pp 713–
[15] Rohlin V. A., Izv. Akad. Nauk SSSR Ser. Mat. 25 pp 499–
[16] DOI: 10.1002/9781118165621
[17] DOI: 10.1016/0304-4149(92)90145-G · Zbl 0762.60023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.