zbMATH — the first resource for mathematics

Magnetic bottles in connection with superconductivity. (English) Zbl 1078.81023
Let \(\Omega\subset{\mathbb R}^2\) be an open set, and let \(P_{h,A,\Omega}=(hD_{x_1}-A_1)^2+ (hD_{x_2}-A_2)^2,\) where \(h>0\) is a small parameter. In this paper, the authors treat in a systematic way and sharpen some results present in the literature on the lowest eigenvalue of \(P_{h,A,\Omega}\) in the Dirichlet and Neumann realizations, respectively, and give accurate estimates on the localization of the ground-state in the case of the Neumann realization. In particular, they prove the following result conjectured by A. Bernoff and P. Sternberg [J. Math. Phys. 39, 1272–1284 (1998; Zbl 1056.82523)]. Theorem: Suppose that the magnetic field \(B=\partial_{x_1}A_2-\partial_{x_2}A_1\) is a non-zero constant. Then any normalized ground-state of the Neumann realization of \(P_{h,A,\Omega}\) is exponentially localized as \(h\to 0\) in the neighborhood of the points of the boundary \(\partial\Omega\) with maximal curvature.
In the final section of the paper, they indicate a number of interesting open problems.

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
35J10 Schrödinger operator, Schrödinger equation
35P15 Estimates of eigenvalues in context of PDEs
35Q40 PDEs in connection with quantum mechanics
82D55 Statistical mechanical studies of superconductors
Full Text: DOI
[1] Agmon, S., Lectures on exponential decay of solutions of second order elliptic equations, Math. notes, 29, (1982), Princeton University Press Princeton · Zbl 0503.35001
[2] Avron, J.; Herbst, I.; Simon, B., Schrödinger operators with magnetic fields I, Duke math. J., 45, 847-883, (1978) · Zbl 0399.35029
[3] Bauman, P.; Phillips, D.; Tang, Q., Stable nucleation for the ginzburg – landau system with an applied magnetic field, Arch. rational mech. anal., 142, 1-43, (1998) · Zbl 0922.35157
[4] Y. Belaud, B. Helffer, and, L. Véron, Long-time vanishing properties of solutions of some semi-linear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press.
[5] Bernoff, A.; Sternberg, P., Onset of superconductivity in decreasing fields for general domains, J. math. phys., 39, 1272-1284, (1998) · Zbl 1056.82523
[6] C. Bolley, Modélisation du champ de retard à la condensation d’un supraconducteur par un problème de bifurcation, M2AN26, 1992, 235-287. · Zbl 0741.35085
[7] Bolley, C.; Helffer, B., An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. inst. H. Poincaré phys. théor., 58, 169-233, (1993) · Zbl 0779.35104
[8] Chapman, S.J., Nucleation of superconductivity in decreasing fields, European J. appl. math., 5, 449-468, (1994) · Zbl 0820.35124
[9] Cycon, H.L.; Froese, R.G.; Kirsch, W.; Simon, B., Schrödinger operators, (1987), Springer-Verlag Berlin
[10] Dauge, M.; Helffer, B., Eigenvalues variation I, Neumann problem for sturm – liouville operators, J. differential equations, 104, 243-262, (1993) · Zbl 0784.34021
[11] De Bièvre, S.; Pulé, J.V., Propagating edge states for a magnetic Hamiltonian, Math. phys. electr. J., 5, (1999) · Zbl 0930.35144
[12] Erdős, L., Rayleigh-type isoperimetric inequality with a homogeneous magnetic field, Calc. var. partial differential equations, 4, 283-292, (1996) · Zbl 0846.35094
[13] Erdős, L., Lifschitz tail in a magnetic field: the non classical regime, Probab. theor. related fields, 112, 321-371, (1998) · Zbl 0921.60099
[14] Fröhlich, J.; Graf, G.M.; Walcher, J., Extended quantum Hall edge states. general domains, Ann. H. Poincaré, 1, 405-442, (2000) · Zbl 1004.81043
[15] Giorgi, T.; Phillips, D., The breakdown of superconductivity due to strong fields for the ginzburg – landau model, SIAM J. math. anal., 30, 341-359, (1999) · Zbl 0920.35058
[16] Helffer, B., Introduction to the semiclassical analysis for the Schrödinger operator and applications, Springer lecture notes in math., 1336, (1988), Springer-Verlag Berlin/New York
[17] Helffer, B., On spectral theory for Schrödinger operators with magnetic potentials, Adv. studies pure math., 23, 113-141, (1993) · Zbl 0816.35100
[18] Helffer, B., Semi-classical analysis for the Schrödinger operator with magnetic wells (after R. Montgomery, B. helffer-A. mohamed), Proceedings of the conference in Minneapolis, the IMA volumes in mathematics and its applications, vol. 95, quasiclassical methods, (1997), Springer-Verlag Berlin/New York, p. 99-114 · Zbl 0887.35131
[19] Helffer, B.; Hoffmann-Ostenhof, T.; Hoffmann-Ostenhof, M.; Owen, M., Nodal sets for the groundstate of the Schrödinger operator with zero magnetic field in a non simply connected domain, Comm. math. phys., 202, 629-649, (1999) · Zbl 1042.81012
[20] Helffer, B.; Mohamed, A., Sur le spectre essentiel des opérateurs de Schrödinger avec champ magnétique, Ann. inst. Fourier, 38, 95-113, (1988) · Zbl 0638.47047
[21] Helffer, B.; Mohamed, A., Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. funct. anal., 138, 40-81, (1996) · Zbl 0851.58046
[22] Helffer, B.; Nourrigat, J., Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, (1985), Birkhäuser Boston · Zbl 0549.35026
[23] Helffer, B.; Nourrigat, J., Décroissance à l’infini des fonctions propres de l’opérateur de Schrödinger avec champ électromagnétique polynomial, J. anal. math. Jérusalem, 58, 263-275, (1992) · Zbl 0814.35080
[24] Helffer, B.; Robert, D., Puits de potentiel généralisés et asymptotique semi-classique, Ann. inst. H. poincare phys. théor., 41, 291-331, (1984) · Zbl 0565.35082
[25] Helffer, B.; Sjöstrand, J., Multiple wells in the semiclassical limit I, Comm. partial differential equations, 9, 337-408, (1984) · Zbl 0546.35053
[26] Helffer, B.; Sjöstrand, J., Puits multiples en limite semiclassique V—le cas des minipuits—, (), 133-186
[27] Helffer, B.; Sjöstrand, J., Puits multiples en limite semi-classique VI—le cas des puits variétés—, Ann. inst. H. poincare phys. théor., 46, 353-373, (1987) · Zbl 0648.35027
[28] Helffer, B.; Sjöstrand, J., Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Ann. ENS pise, XIV, 625-657, (1987) · Zbl 0699.35205
[29] Hornberger, K.; Smilansky, U., The boundary integral method for magnetic billards, J. phys. A, 33, 2829-2855, (2000) · Zbl 0954.81018
[30] K. Hornberger, and, U. Smilansky, The exterior and interior edge states of magnetic billiards, preprint, September 2000. · Zbl 0954.81018
[31] H. T. Jadallah, The onset of superconductivity in a domain with a corner, preprint, August 2000. · Zbl 1063.82041
[32] Lu, K.; Pan, X.-B., Estimates of the upper critical field for the ginzburg – landau equations of superconductivity, Physica D, 127, 73-104, (1999) · Zbl 0934.35174
[33] Lu, K.; Pan, X.-B., Eigenvalue problems of ginzburg – landau operator in bounded domains, J. math. phys., 40, 647-2670, (1999) · Zbl 0943.35058
[34] Lu, K.; Pan, X.-B., Gauge invariant eigenvalue problems on \(R\)^2 and \(R\)2+, Trans. amer. math. soc., 352, 1247-1276, (2000) · Zbl 1053.35124
[35] K. Lu, and, X.-B. Pan, Ginzburg-Landau system and surface nucleation of superconductivity, Proceeding of the IMS Workshop on Reaction-Diffusion systems, Chinese University of Hong-Kong, December 6-11, 1999.
[36] Lu, K.; Pan, X.-B., Surface nucleation of superconductivity in 3-dimension, J. differential equations, 168, 386-452, (2000) · Zbl 0972.35152
[37] L. Maigrot, Encadrement de la première valeur propre d’un opérateur de Schrödinger dégénéré, preprint, University of Reims, June 1999.
[38] A. Martinez and V. Sordoni, Microlocal WKB expansions, Math. Phys., preprint Archive, 98-203, www.ma.utexas.edu/mp_arc/. · Zbl 0941.35136
[39] Matsumoto, H., Semiclassical asymptotics of eigenvalues for Schrödinger operators with magnetic fields, J. functional anal., 129, 168-190, (1995) · Zbl 0859.35081
[40] Matsumoto, H.; Ueki, N., Spectral analysis of Schrödinger operators with magnetic fields, J. functional anal., 140, 218-255, (1996) · Zbl 0866.35083
[41] Melin, A., Lower bounds for pseudo-differential operators, Ark. math., 9, 117-140, (1971) · Zbl 0211.17102
[42] Mohamed, A.; Nourrigat, J., Encadrement du N(λ) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique, J. math. pures appl., 70, 87-99, (1991) · Zbl 0725.35068
[43] Mohamed, A.; Parisse, B., Approximation des valeurs propres de certaines perturbations singulières et application à l’opérateur de Dirac, Ann. inst. H. Poincaré phys. théor., 56, 235-277, (1992) · Zbl 0755.35106
[44] Montgomery, R., Hearing the zero locus of a magnetic field, Comm. math. phys., 168, 651-675, (1995) · Zbl 0827.58076
[45] X.-B. Pan, Upper critical for superconductors with edges and corners, preprint, 2000, submitted for publication.
[46] B. Parisse, Construction BKW en fonds de puits, cas particuliers, (Schrödinger, Dirac avec champ magnétique), preprint, Université de Grenoble, December 1999.
[47] del Pino, M.; Felmer, P.L.; Sternberg, P., Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. math. phys., 210, 413-446, (2000) · Zbl 0982.35077
[48] Reed, M.; Simon, B., Methods of modern mathematical physics, IV: analysis of operators, (1978), Academic Press New York · Zbl 0401.47001
[49] Shigekawa, I., Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold, J. funct. anal., 75, (1987) · Zbl 0629.58023
[50] Simon, B., Semi-classical analysis of low lying eigenvalues I, Ann. inst. H. Poincaré, 38, 295-307, (1983)
[51] Sordoni, V., Gaussian decay for the eigenfunctions of a Schrödinger operator with magnetic field constant at infinity, Comm. partial differential equations, 23, 223-242, (1998) · Zbl 0898.34077
[52] Ueki, N., Lower bounds for the spectra of Schrödinger operators with magnetic fields, J. funct. anal., 120, 344-379, (1994) · Zbl 0805.35025
[53] Ueki, N., Asymptotics of the infimum of the spectrum of Schrödinger operators with magnetic fields, J. math. Kyoto univ., 37, 615-638, (1998) · Zbl 0928.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.