Coupling Poisson and Jacobi structures on foliated manifolds. (English) Zbl 1079.53130

From the summary: We extend Yu. M. Vorob’ev’s theory of coupling Poisson structures [ Lie algebroids and related topics in differential geometry (Warsaw, 2000), Banach Cent. Publ. 54, 249–274 (2001; Zbl 1007.53062)] from fiber bundles to foliated manifolds and give simpler proofs of Vorobiev’s existence and equivalence theorems of coupling Poisson structures on duals of kernels of transitive Lie algebroids over symplectic manifolds. We then discuss the extension of the coupling condition to Jacobi structures on foliated manifolds.


53D17 Poisson manifolds; Poisson groupoids and algebroids
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)


Zbl 1007.53062
Full Text: DOI arXiv


[1] Gelfand I. M., Funkt. Anal. Prilozhen 14 pp 71–
[2] Dazord P., J. Math. Pures et Appl. 70 pp 101–
[3] DOI: 10.1017/CBO9780511574788
[4] DOI: 10.1016/S0764-4442(00)00512-7 · Zbl 0983.53055
[5] DOI: 10.1007/978-94-010-1550-9
[6] DOI: 10.1017/CBO9780511661839
[7] Mackenzie K. C. H., Duke Math. J. 18 pp 415–
[8] DOI: 10.1007/978-1-4684-8670-4
[9] DOI: 10.1073/pnas.74.12.5253 · Zbl 0765.58010
[10] Vaisman I., Cohomology and Differential Forms (1973) · Zbl 0267.58001
[11] DOI: 10.1007/978-3-0348-8495-2
[12] Vaisman I., Selected Topics in Geom. and Math. Phy. 1 pp 81–
[13] DOI: 10.1063/1.1502928 · Zbl 1060.53077
[14] Y. Vorobjev, Lie Algebroids and Related Topics in Differential Geometry 54, eds. J. Kubarski, P. Urbański and R. Wolak (Banach Center Publ., Warszawa, 2001) pp. 249–274.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.