zbMATH — the first resource for mathematics

Decay of correlations for piecewise expanding maps. (English) Zbl 1080.37501
Summary: This paper investigates the decay of correlations in a large class of non-Markov one-dimensional expanding maps. The method employed is a special version of a general approach recently proposed by the author. Explicit bounds on the rate of decay of correlations are obtained.

37A30 Ergodic theorems, spectral theory, Markov operators
Full Text: DOI
[1] V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone transformations,Commun. Math. Phys. 127:459–477 (1990). · Zbl 0703.58048 · doi:10.1007/BF02104498
[2] M. Benedicks and L.-S. Young, Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps,Ergodic Theory Dynam. Syst. 12:13–37 (1992). · Zbl 0769.58051 · doi:10.1017/S0143385700006556
[3] Garret Birkhoff, Extension of Jentzsch’s theorem,Trans. Am. Math. Soc. 85:219–227 (1957). · Zbl 0079.13502
[4] Garret Birkhoff,Lattice Theory, 3rd ed. (American Mathematical Society Colloquium Publications, Providence, Rhode Island, 1967).
[5] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains,Ann. Appl. Prob. 1:36–61 (1991). · Zbl 0731.60061 · doi:10.1214/aoap/1177005980
[6] P. Collet, An estimate of the decay of correlations for mixing non Markov expanding maps of the interval, preprint (1994).
[7] P. Ferrero, Contribution à la théorie des états d’équilibre en méchanique statistique, Theses (1981).
[8] P. Ferrero and B. Schmitt, Produits aléatories d’opérateurs matrices de transfert,Prob. Theory Related Fields 79:227–248 (1988). · Zbl 0633.60014 · doi:10.1007/BF00320920
[9] P. Ferrero and B. Schmitt, On the rate of convergence for some limit ratio theorem related to endomorphisms with a nonregular invariant density, preprint.
[10] P. Ferrero and B. Schmitt, Ruelle’s Perron-Frobenius theorem and projective metrics, inRandom Fields, Esztergom (Hungary), Colloquia Mathematica Societas János Bolyai, Vol. 27 (1979).
[11] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotone transformations,Math. Z. 180:119–140 (1982). · Zbl 0485.28016 · doi:10.1007/BF01215004
[12] B. R. Hunt, Estimating invariant measures and Lyapunov exponents, preprint. · Zbl 0858.58029
[13] G. Keller, Un théorème de la limite centrale pour une classe de transformations monotones par morceaux,C. R. Acad. Sci. A 291:155–158 (1980). · Zbl 0446.60013
[14] C. Ionescu-Tulcea and Marinescu,Ann. Math. 52:140–147 (1950). · Zbl 0040.06502 · doi:10.2307/1969514
[15] C. Liverani, Decay of correlations, to appear inAnn. Math. · Zbl 0871.58059
[16] A. Lasota and J. Yorke, On existence of invariant measures for piecewise monotonic transformations,Trans. Am. Math. Soc. 186:481–487 (1973). · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[17] D. Ruelle,Thermodynamic Formalism (Addison-Wesley, New York, 1978).
[18] D. Ruelle, The thermodynamic formalism for expanding maps,Commun. Math. Phys. 125:239–262 (1989). · Zbl 0702.58056 · doi:10.1007/BF01217908
[19] D. Ruelle, An extension of the theory of fredholm determinants,IHES 72:175–193 (1990). · Zbl 0732.47003
[20] Marek Rychlik, Regularity of the metric entropy for expanding maps,Trans. Am. Math. Soc. 315(2):833–847 (1989). · Zbl 0686.58023 · doi:10.1090/S0002-9947-1989-0958899-6
[21] H. Samelson, On the Perron-Frobenius theorem,Michigan Math. J. 4:57–59 (1956). · Zbl 0077.02303
[22] L.-S. Young, Decay of correlations for certain quadratic maps,Commun. Math. Phys. 146:123–138 (1992). · Zbl 0760.58030 · doi:10.1007/BF02099211
[23] K. Ziemian, On the Perron-Frobenius operator and limit theorems for some maps of an interval,Ergodic Theory and Related Topics II, Proceedings (Teubner, 1987), pp. 206–211.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.