×

zbMATH — the first resource for mathematics

Chaos-hyperchaos transition. (English) Zbl 1080.37532
Summary: We discuss properties of an attractor in the neighbourhood of chaos-hyperchaos transition. The intermittency like model and a scaling law for the transition based on the features of the Poincaré map are developed. We investigate the properties of the Lyapunov and correlation dimensions in the neighbourhood of the transition point.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rossler, O.E., Z. naturforsch. a, 38, 788-801, (1983)
[2] Rossler, O.E., Phys. lett. A, 71, 155, (1979)
[3] Kaneko, K., Prog. theor. phys., 69, 1427, (1983)
[4] Kapitaniak, T.; Steeb, W.-H., Phys. lett. A, 152, 33, (1991)
[5] Kapitaniak, T., Phys. rev. E, 47, R2975, (1993)
[6] Pecora, L.; Carroll, T.S., Phys. rev. lett., 67, 945-948, (1991)
[7] Ott, E.; Grebogi, C.; Yorke, Y.A., Phys. rev. lett., 64, 1196, (1990)
[8] Pecora, L.; Carroll, T.S., Phys. rev. lett., 64, 821-824, (1990)
[9] Pecora, L.; Carroll, T.S., IEEE trans. circuits and systems, 38, 453-456, (1991)
[10] de Sousa, M.; Lichtenberg, A.J.; Lieberman, M.A., Self-synchronization of many coupled oscillators, Memorandum no. UCB/ERL M92/20, (1992) · Zbl 0875.93179
[11] Kapitaniak, T., ()
[12] Kaplan, J.L.; Yorke, J.A., ()
[13] Grassberger, P.; Procacia, I., Phys. rev. lett., 50, 346-349, (1983)
[14] Abraham, N.B.; Albano, A.M.; Das, B.; DeGuzman, G.; Yong, S.; Gioggia, R.S.; Puccioni, G.R.; Tredice, J.R., Phys. lett. A, 114, 217-221, (1986)
[15] Lorenz, E., Nature, lond, 353, 241-244, (1991)
[16] Wojewoda, J.; Kapitaniak, T.; Barron, R.; Brindley, J., Chaos, solitons & fractals, 3, 35, (1993)
[17] T. Kapitaniak, Chaos, Solitons & Fractals\bf1, 67-77.
[18] Kapitaniak, T.; El Naschie, M.S., Phys. lett. A, 154, 249-254, (1991)
[19] Parker, T.S.; Chua, L.O., ()
[20] Ditto, W.L.; Spano, M.L.; Savage, H.T.; Rauseo, S.W.; Heagy, J.; Ott, E., Phys. rev. lett., 65, 533-535, (1990)
[21] Kapitaniak, T.; Chua, L.O., Int. J. bifurcation and chaos, 4, 477-483, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.