zbMATH — the first resource for mathematics

A method for computing families of discrete knots using knot numbers. (English) Zbl 1080.57007
The author presents an approach for generating polygons on the cubic lattice based on the orthogonal direction change chain code. This chain code allows to represent discrete knots, that is, the digitalized representation of a knot. By considering the chain elements a unique knot descriptor is obtained that is invariant under translation, rotation and starting point. The analysis and elimination of particular curves allow the author to detect the simplest nontrivial knot.

57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI
[1] DOI: 10.1017/S030500410003557X
[2] DOI: 10.1063/1.1704022 · Zbl 0122.36502
[3] DOI: 10.1142/S0218216593000234 · Zbl 0797.57004
[4] DOI: 10.1007/BF02188227 · Zbl 0834.57004
[5] DOI: 10.1142/S0218216595000065 · Zbl 0843.57006
[6] Hayes B., Amer. Sci. 85 pp 506–
[7] Vologodskii A. V., Soviet Phys. J. Exp. Theor. Phys. 39 pp 1059–
[8] DOI: 10.1088/0305-4470/21/7/030 · Zbl 0659.57003
[9] DOI: 10.1007/BF01020290
[10] DOI: 10.1088/0305-4470/34/19/305 · Zbl 1028.82512
[11] DOI: 10.1006/eujc.1999.0314 · Zbl 0938.57006
[12] DOI: 10.1016/S0031-3203(99)00093-X
[13] DOI: 10.1142/S0218216502002256 · Zbl 1027.57010
[14] DOI: 10.1016/0031-3203(80)90009-6
[15] Livingston C., Knot Theory (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.