Bertoin, Jean; Martínez, Servet Fragmentation energy. (English) Zbl 1080.60080 Adv. Appl. Probab. 37, No. 2, 553-570 (2005). In mining the particles obtained by blasting are mechanically reduced in size by a combination of methods. Operating the machinery requires energy and that generates costs. The energy problem is investigated by modelling the fragmentation chain as a Crump-Mode-Jagers branching process in which time corresponds to the logarithm of the fragment size. Applying results of O. Nerman [Z. Wahrscheinlichkeitstheorie Verw. Geb. 57, 365–395 (1981; Zbl 0451.60078)] leads to limits for the distribution of sizes less than \(\eta\), say, and estimates for the energy \(E(\eta)\) required. In fact, \(E(\eta)\sim c\eta^{\beta-\alpha}\), where \(\alpha\) is the Malthusian parameter and \(\beta<\alpha\). The idea of modelling the fragmentation chain by a stochastic branching process dates back to A. N. Kolmogorov and B. A. Sevast’yanov [Dokl. Akad. Nauk SSSR, N. Ser. 56, 783–786 (1947; Zbl 0041.45502)]. Reviewer: Heinrich Hering (Rockenberg) Cited in 3 ReviewsCited in 10 Documents MSC: 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 60F15 Strong limit theorems Keywords:branching process Citations:Zbl 0451.60078; Zbl 0041.45502 PDF BibTeX XML Cite \textit{J. Bertoin} and \textit{S. Martínez}, Adv. Appl. Probab. 37, No. 2, 553--570 (2005; Zbl 1080.60080) Full Text: DOI OpenURL References: [1] Berestycki, J. (2002). Ranked fragmentations. ESAIM , Prob. Statist. 6 , 157–176. · Zbl 1001.60078 [2] Bertoin, J. (1999). Subordinators: examples and applications. In Lectures on Probability Theory and Statistics (St-Flour, 1997; Lecture Notes Math. 1717 ), Springer, Berlin, pp. 1–91. · Zbl 0955.60046 [3] Bertoin, J. (2001). Homogeneous fragmentation processes. Prob . Theory Relat. Fields 121 , 301–318. · Zbl 0992.60076 [4] Bertoin, J. (2002). Self-similar fragmentations. Ann . Inst. H. Poincaré Prob. Statist. 38 , 319–340. · Zbl 1002.60072 [5] Bertoin, J. (2003). The asymptotic behavior of fragmentation processes. J . Europ. Math. Soc. 5 , 395–416. · Zbl 1042.60042 [6] Biggins, J. D. (1977). Martingale convergence in the branching random walk. J . Appl. Prob. 14 , 25–37. · Zbl 0356.60053 [7] Bond, F. C. (1952). The third theory of conminution. AIME Trans . Vol. 193 , 484. [8] Charles, R. J. (1957). Energy-size reduction relationships in conminution. AIME Trans . Vol. 208 , 80–88. [9] Devoto, D. and Martínez, S. (1998). Truncated Pareto law and oresize distribution of ground rocks. Math . Geology 30 , 661–673. [10] Jagers, P. (1989). General branching processes as Markov fields. Stoch . Process. Appl. 32 , 183–212. · Zbl 0678.92009 [11] Nerman, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z . Wahrscheinlichkeitsth. 57 , 365–395. · Zbl 0451.60078 [12] Perrier, E. M. and Bird, N. R. (2002). Modelling soil fragmentation: the pore solid fractal approach. Soil Tillage Res . 64 , 91–99. [13] Turcotte, D. L. (1986). Fractals and fragmentation. J . Geophys. Res. 91 , 1921–1926. [14] Uchiyama, K. (1982). Spatial growth of a branching process of particles living in \(R\spd\). Ann . Prob. 10 , 896–918. · Zbl 0499.60088 [15] Walker, W. H., Lewis, W. K., McAdams, W. H. and Gilliland, E. R. (1967). Principles of Chemical Engineering . McGraw-Hill, New York. [16] Weiss, N. L. (ed.) (1985). SME Mineral Processing Handbook , Vol. 1. Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp. 3A-28–3A-55. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.