zbMATH — the first resource for mathematics

Choosing document structure weights. (English) Zbl 1080.68590
Summary: Existing ranking schemes assume all term occurrences in a given document are of equal influence. Intuitively, terms occurring in some places should have a greater influence than those elsewhere. An occurrence in an abstract may be more important than an occurrence in the body text. Although this observation is not new, there remains the issue of finding good weights for each structure.
Vector space, probability, and Okapi BM25 ranking are extended to include structure weighting. Weights are then selected for the TREC WSJ collection using a genetic algorithm. The learned weights are then tested on an evaluation set of queries. Structure weighted vector space inner product and structure weighted probabilistic retrieval show an about 5% improvement in mean average precision over their unstructured counterparts. Structure weighted BM25 shows nearly no improvement. Analysis suggests BM25 cannot be improved using structure weighting.

68P20 Information storage and retrieval of data
68W05 Nonnumerical algorithms
Full Text: DOI