×

zbMATH — the first resource for mathematics

Worst case scenario analysis for elliptic problems with uncertainty. (English) Zbl 1082.65115
The paper deals with linear elliptic problems under uncertainty. The authors propose a methodology to compute the worst case scenario for the elliptic problem under consideration using tools from perturbation analysis and duality techniques.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J20 Variational methods for second-order elliptic equations
35R60 PDEs with randomness, stochastic partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Guide for Verification and Validation of Computational Fluid dynamics simulation. Technical Report AIAA G-077-1998, American Institute of Aeronautics and Astronautics, 1998
[2] Ainsworth, M., Oden, J-T.: A posteriori Error Estimation in Finite Element Analysis. Wiley, 2000 · Zbl 1008.65076
[3] Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions. Math. Comp. 71(240), 1339–1370 (electronic) (2002) · Zbl 1007.65086
[4] Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems. Numer. Math. 93(4), 583–610 (2003) · Zbl 1016.65088
[5] Babuška, I., Oden, J.T.: Verification and validation in computational engineering and science. Part I: Basic concepts. Comp. Meth. Appl. Mech. Engrg. 193, 4057-4066 (2004) · Zbl 1198.74126
[6] Babuška, I., Stroboulis, T.: The Finite Element Method and its Reliability. Oxford Sci. Publ., 2001
[7] Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003 · Zbl 1020.65058
[8] Ben-Haim, Y.: Information-gap decision theory. Series on Decision and Risk. Academic Press Inc., San Diego CA, 2001. Decisions under severe uncertainty · Zbl 0985.91013
[9] Ben-Haim, Y., Elishakoff, I.: Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam, 1990 · Zbl 0703.73100
[10] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer–Verlag, 1994 · Zbl 0804.65101
[11] Brezis, H.: Analyse fonctionnelle: Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, 1983
[12] Cacuci, D.: Sensitivity and Uncertainty analysis: theory. Volume 1. Chapman & Hall 2003 · Zbl 1030.60001
[13] Achenbach, J., Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain input data problems and the worst scenario method. Elsevier, 2004
[14] National Research Council. Science and Judgment in Risk Assessment. National Academy Press, 1994
[15] Cullen, A.C., Frey, H.Ch.: Probabilistic Techniques Exposure Assessment. Plenum Press, 1999
[16] Elishakoff, I.: Probabilistic Methods in the Theory of Structures. Dover, Second edition, 1999 · Zbl 0572.73094
[17] Elishakoff, I. (ed.): Whys and hows in uncertainty modelling. Springer–Verlag, 1999
[18] Evans, L.: Partial Differential Equations. Volume 19 of Graduate Studies in Mathematics. AMS, 1998 · Zbl 0902.35002
[19] Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (6):1756–1778 (electronic), 2001. · Zbl 0990.49028
[20] Helton, J.C.: Analysis in the presence of stochastic and subjective uncertainties. J. Stochastical Computations and Simulations 57, 3–76 (1997) · Zbl 0937.62004 · doi:10.1080/00949659708811803
[21] Helton, J.C.: Uncertainty and Sensitivity Analysis in performance assessment for waste isolation Plant. Comput. Phys. Commun. 117, 156–180 (1999) · doi:10.1016/S0010-4655(98)00171-4
[22] Machiels, L., Maday, Y., Patera, A.T.: A ”flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 330(3), 249–254 (2000) · Zbl 0946.65101
[23] Melchers, R.E.: Structural Reliability Analysis and Prediction. Wiley, 1999
[24] Modarres, M., What Every Engineer Should know about Reliability and Risk Analysis. Dekker, 1993
[25] Moon, K.-S., Von Schwerin, E., Szepessy, A., Tempone, R.: Convergence Rates for an adaptive dual weighted residual finite element algorithm. ICES Report 04-19, ICES University of Texas at Austin, April 2004 · Zbl 1101.65103
[26] Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences 38, 209–272 (2002) · doi:10.1016/S0376-0421(02)00005-2
[27] Oberkampf, W.L., Trucano, T.G., Hirsch, Ch.: Verification, validation and predictive capabilities in computational engineering and physics. SANDIA Report SAND2003-3769, Sandia National Laboratories, 2003
[28] Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001) · Zbl 0987.65110
[29] Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182, 496–515 (2002) · Zbl 1053.74049 · doi:10.1006/jcph.2002.7183
[30] Oden, J.T., Prudhomme, S., Hammerand, D.C., Kuczma, M.S.: Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Meth. Appl. Mech. Engrg. 190, 6663–6684 (2001) · Zbl 1012.74081 · doi:10.1016/S0045-7825(01)00256-0
[31] Pironneau, O.: Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer-Verlag, New York, 1984 · Zbl 0534.49001
[32] Ramsey, Ch.B., Modarres, M.: Commercial Nuclear Power. Assuring Safety for the Future. Wiley, 1997
[33] Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998
[34] Spanos, P.D., Deodatis, D. (eds.): Computational Stochastic Mechanics. Proceeding of the Fourth International Conference on Computational Mechanics, Corfu Greece June 9–12, 2002. Millpress, 2003
[35] Szabó, B., Babuška, I.: Finite element analysis. Wiley, New York, 1991 · Zbl 0792.73003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.