×

zbMATH — the first resource for mathematics

Nonlinear shell models with seven kinematic parameters. (English) Zbl 1082.74050
Summary: We discuss design of nonlinear finite rotation shell model with seven kinematic displacement-like parameters, which are: three displacements of the middle surface, two rotations of the shell director, and two through-the-thickness stretching parameters. From the theoretical side we examine several possibilities for constructing the enriched kinematic field, which leads to different higher-order 7-parameter shell formulations. From the finite element implementation side, a shell director interpolation is identified which eliminates the “curvature thickness locking”. Numerical examples are presented in order to compare different formulations and to illustrate the performance of the developed finite elements.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
Software:
AceGen; SMS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Başar, Y.; Ding, Y., Shear deformation models for large-strain shell analysis, Int. J. solids struct., 34, 1687-1708, (1997) · Zbl 0944.74577
[2] Başar, Y.; Itskov, M.; Eckstein, A., Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements, Comput. methods appl. mech. engrg., 185, 367-397, (2000) · Zbl 0981.74061
[3] Bathe, K.J.; Dvorkin, E., A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, Int. J. numer. methods engng., 21, 367-383, (1985) · Zbl 0551.73072
[4] Betsch, P.; Stein, E., An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element, Commun. numer. methods engng., 11, 899-909, (1995) · Zbl 0833.73051
[5] Betsch, P.; Gruttmann, F.; Stein, E., A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, Comput. methods appl. mech. engrg., 130, 57-79, (1996) · Zbl 0861.73068
[6] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. numer. methods engng., 40, 4427-4449, (1997) · Zbl 0892.73054
[7] Bischoff, M.; Ramm, E., On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. solids struct., 37, 6933-6960, (2000) · Zbl 1003.74045
[8] Brank, B.; Perić, D.; Damjanić, F.B., On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Comput. mech., 16, 341-359, (1995) · Zbl 0848.73060
[9] Brank, B.; Perić, D.; Damjanić, F.B., On large deformations of thin elasto-plastic shells: implementation of a finite rotation model for quadrilateral shell element, Int. J. numer. methods engng., 40, 689-726, (1997) · Zbl 0892.73055
[10] Brank, B.; Ibrahimbegović, A., On the relation between different parametrizations of finite rotations for shells, Engng. comput., 18, 950-973, (2001) · Zbl 1017.74069
[11] Brank, B.; Korelc, J.; Ibrahimbegović, A., Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation, Comp. struct., 80, 699-717, (2002)
[12] Braun, M.; Bischoff, M.; Ramm, E., Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates, Comput. mech., 15, 1-18, (1994) · Zbl 0819.73042
[13] Büchter, N.; Ramm, E., Shell theory versus degeneration—a comparison in large rotation finite element analysis, Int. J. numer. methods engng., 34, 39-59, (1992) · Zbl 0760.73041
[14] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept, Int. J. numer. methods engng., 37, 2551-2568, (1994) · Zbl 0808.73046
[15] Chapelle, D.; Ferent, A., Reliability considerations for 3D-shell elements, (), 181-184
[16] El-Abbasi, N.; Meguid, S.A., A new shell element accounting for through-thickness deformation, Comput. methods appl. mech. engrg., 189, 841-862, (2000) · Zbl 1011.74068
[17] Ibrahimbegović, A., On assumed shear strain in finite rotation shell analysis, Engng. comput., 12, 425-438, (1995) · Zbl 0831.73033
[18] Ibrahimbegović, A.; Brank, B.; Courtois, P., Stress resultant geometrically exact form of classical shell model and vector-like parametrization of constrained finite rotations, Int. J. numer. methods engng., 52, 1235-1252, (2001) · Zbl 1112.74420
[19] Korelc, J., Automatic generation of finite element code by simultaneous optimization of expressions, Theoret. comput. sci., 187, 231-248, (1997) · Zbl 0893.68084
[20] J. Korelc, Automatic generation of numerical codes with introduction to AceGen 4.0 symbolic code generator, Faculty of Civil and Geodetic Engineering, University of Ljubljana, 2003. Available from: <www.fgg.uni-lj.si/Symech/>
[21] Sansour, C., A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. appl. mech., 65, 194-216, (1995) · Zbl 0827.73044
[22] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model. part II: the linear theory; computational aspects, Comput. methods appl. mech. engrg., 73, 53-92, (1989) · Zbl 0724.73138
[23] Simo, J.C.; Rifai, M.S.; Fox, D.D., On a stress resultant geometrically exact shell model. part III: computational aspects of the nonlinear theory, Comput. methods appl. mech. engrg., 79, 21-70, (1990) · Zbl 0746.73015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.