×

zbMATH — the first resource for mathematics

Perspectives of fuzzy systems and control. (English) Zbl 1082.93030
Summary: Although fuzzy control was initially introduced as a model-free control design method based on the knowledge of a human operator, current research is almost exclusively devoted to model-based fuzzy control methods that can guarantee stability and robustness of the closed-loop system. State-of-the-art techniques for identifying fuzzy models and designing model-based controllers are reviewed in this article. Attention is also paid to the role of fuzzy systems in higher levels of the control hierarchy, such as expert control, supervision and diagnostic systems. Open issues are highlighted and an attempt is made to give some directions for future research.

MSC:
93C42 Fuzzy control/observation systems
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alata, M.; Su, C.Y.; Demirli, K., Adaptive control of a class of nonlinear systems with a first-order parameterized sugeno fuzzy approximator, IEEE trans. systems man cybernet.—part C, 31, 3, (2001)
[2] W. Assawinchaichote, S.K. Nguang, P. Shi, H-infty output feedback control design for uncertain fuzzy singularly perturbed systems: an LMI approach, Automatica 40 (12) (2004) 2147-2152. · Zbl 1059.93504
[3] Babuška, R., Fuzzy modeling for control, (1998), Kluwer Academic Publishers Boston, USA
[4] Blanco, Y.; Perruquetti, W.; Borne, P., Non quadratic stability of nonlinear systems in the takagi – sugeno form, ()
[5] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki (Eds.), Diagnosis and Fault-Tolerant Control, Springer, London, 2003. · Zbl 1023.93001
[6] Boyd, S.P.; Ghaoui, L.E.; Feron, E., Linear matrix inequalities in systems and control theory, (1994), SIAM Philadelphia
[7] Cao, S.G.; Rees, N.W.; Feng, G., Analysis and design of fuzzy control systems using dynamic fuzzy state space models, IEEE trans. fuzzy systems, 7, 192-200, (1999)
[8] Carrasco, E.F.; Rodríguez, J., Diagnosis of acidification states in an anaerobic wastewater treatment plant using a fuzzy-based expert system, Control eng. practice, 12, 1, 59-64, (2004)
[9] Cayrac, D.; Dubois, D.; Prade, H., Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application, IEEE trans. fuzzy systems, 4, 3, 251-269, (1996)
[10] Y.C. Chang, Robust tracking control of nonlinear MIMO systems via fuzzy approaches, Automatica (36) (2000) 1535-1545. · Zbl 0967.93060
[11] Chang, Y.C., Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and \(\mathcal{H}_\infty\) approaches, IEEE trans. fuzzy systems, 9, 278-292, (2001)
[12] Chen, B.S.; Lee, C.H.; Chang, Y.C., \(H_\infty\) tracking design of uncertain nonlinear siso systems: adaptive fuzzy approach, IEEE trans. fuzzy systems, 4, 1, 32-43, (1996)
[13] Chen, B.S.; Tseng, C.S.; Uang, H.J., Mixed fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach, IEEE trans. fuzzy systems, 8, 3, 249-265, (2000)
[14] Chiang, L.H.; Russell, E.L.; Braatz, R.D., Fault detection and diagnosis in industrial systems, (2001), Springer Berlin · Zbl 0982.93005
[15] Y. Diao, K.M. Passino, Adaptive neural/fuzzy control for interpolated nonlinear systems, IEEE Trans. Fuzzy Systems 10(5) (2002).
[16] Dubois, D.; Prade, H., Possibility theory: an approach to computerized processing of uncertainty, (1988), Plenum Press New York
[17] Evsukoff, A.; Gentil, S.; Montmain, J., Fuzzy reasoning in co-operative supervision systems, Control eng. practice, 8, 4, 389-407, (2000)
[18] Feng, G., Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions, IEEE trans. fuzzy systems, 11, 5, 605-612, (2003)
[19] Fishle, K.; Schroder, D., An improved adaptive fuzzy control method, IEEE trans. fuzzy systems, 7, 1, 27-40, (1999)
[20] D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press, Oxford, 1994. · Zbl 0804.03017
[21] Guerra, T.M.; Vermeiren, L., LMI-based relaxed non quadratic stabilization conditions for non-linear systems in the takagi – sugeno’s form, Automatica, 40, 5, 823-829, (2004) · Zbl 1050.93048
[22] Han, H.; Su, C.Y.; Stepanenko, Y., Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators, IEEE trans. fuzzy systems, 9, 2, 315-323, (2001)
[23] H. Hellendoorn, D. Driankov (Eds.), Fuzzy Model Identification: Selected Approaches, Springer, Berlin, Germany, 1997. · Zbl 0874.00030
[24] Hojati, M.; Gazor, S., Hybrid adaptive fuzzy identification and control of nonlinear systems, IEEE trans. fuzzy systems, 10, 2, 198-210, (2002)
[25] Holmblad, L.P.; Ostergaard, J.J., Control of a cement kiln by fuzzy logic, (), 398-409
[26] Hong, S.K.; Langari, R., An LMI-based fuzzy control system design with TS framework, Inform. sci., 123, 163-179, (2000) · Zbl 0953.93520
[27] Jadbabaie, A.; Titli, A.; Jamshidi, M., Fuzzy observer based control of nonlinear systems, ()
[28] Jin, Y., Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement, IEEE trans. fuzzy systems, 8, -, 212-222, (2000)
[29] Joh, J.; Langari, R.; Jeung, E.T.; Chung, W.J., A new design method for continuous takagi – sugeno fuzzy controller with pole placement constraints: an LMI approach, IEEE trans. fuzzy systems, 5, 3, 72-79, (1997)
[30] Johansen, T.A.; Shorten, R.; Murray-Smith, R., On the interpretation and identification of dynamic takagi – sugeno fuzzy models, IEEE trans. fuzzy systems, 8, 297-313, (2000)
[31] Johansson, M.; Rantzer, A.; Arzen, K.E., Piecewise quadratic stability of fuzzy systems, IEEE trans. fuzzy systems, 7, 713-722, (1999)
[32] K. M. Koo, Stable adaptive fuzzy controller with time-varying dead-zone, Fuzzy Sets and Systems (121) (2001) 161-168. · Zbl 0993.93019
[33] Li, H.-X.; Tong, S.C., A hybrid adaptive fuzzy control for a class of nonlinear mimo systems, IEEE trans. fuzzy systems, 11, 1, 24-34, (2003)
[34] Liu, X.; Zhang, Q., New approaches to controller designs based on fuzzy observers for T-S fuzzy systems via LMI, Automatica, 39, 9, 1571-1582, (2003) · Zbl 1029.93042
[35] Mamdani, E.H., Application of fuzzy logic to approximate reasoning using linguistic systems, Fuzzy sets systems, 26, 1182-1191, (1977) · Zbl 0397.94025
[36] Mamdani, E.H.; Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller, Internat. J. man-machine stud., 7, 1-13, (1975) · Zbl 0301.68076
[37] Morant, F.; Albertos, P.; Martinez, M.; Crespo, A.; Navarro, J.L., RIGAS: an intelligent controller for cement kiln control, ()
[38] Nounou, H.N.; Passino, K.M., Stable auto-tuning of adaptive fuzzy/neural controllers for nonlinear discrete-time systems, IEEE trans. fuzzy systems, 12, 1, 70-83, (2004)
[39] Oh, S.-K.; Pedrycz, W.; Rho, S.-B.; Ahn, T.-C., Parameter estimation of fuzzy controller and its application to inverted pendulum, Eng. applic. artif. intelligence, 17, 1, 37-60, (2004)
[40] Ordonez, R.; Passino, K.M., Stable multi-input multi-output adaptive fuzzy/neural control, IEEE trans. fuzzy systems, 7, 3, 345-353, (1999)
[41] C.W. Park, M. Park, C.H. Lee, Design of an adaptive fuzzy model based controller for chaotic dynamics in lorenz systems with uncertainty, Inform. Sci. (147) (2002) 245-266. · Zbl 1008.93512
[42] Pomares, H.; Rojas, I.; Ortega, J.; Gonzalez, J.; Prieto, A., A systematic approach to a self-generating fuzzy rule-table for function approximation, IEEE trans. systems man cybernet. part B:—cybernet., 30, 3, 431-447, (2000)
[43] Russell, S.; Norvig, P., Artificial intelligence: a modern approach, (2003), Prentice-Hall Englewood Cliffs, NJ
[44] Setnes, M.; Babuska, R.; Verbruggen, H.B., Rule-based modeling: precision and transparency, IEEE trans. systems man cybernet.—part C: applications and reviews, 28, 1, 165-169, (1998)
[45] Setnes, M.; Roubos, J.A., Ga-fuzzy modeling and classification: complexity and performance, IEEE trans. fuzzy systems, 8, 5, 509-522, (2000)
[46] G. Shafer, J. Pearl (Eds.), Readings in Uncertain Reasoning, Morgan Kaufmann Publishing, Los Altos, CA, 1990. · Zbl 0805.68121
[47] Skrjanc, I.; Balzic, S.; Matko, D., Direct fuzzy model-reference adaptive control, Internat. J. intelligent systems, 17, 943-963, (2002) · Zbl 1015.93031
[48] Spooner, J.T.; Passino, K.M., Stable adaptive control using fuzzy systems and neural networks, IEEE trans. fuzzy systems, 4, 339-359, (1996)
[49] Su, C.Y.; Stepanenko, Y., Adaptive control of a class of nonlinear systems with fuzzy logic, IEEE trans. fuzzy systems, 2, 4, 285-294, (1994)
[50] Tanaka, K.; Ikeda, T.; Wang, H.O., Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stability, \(\operatorname{H}_\infty\) control theory and linear matrix inequalities, IEEE trans. fuzzy systems, 4, 1, 1-13, (1996)
[51] Tanaka, K.; Ikeda, T.; Wang, H.O., Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE trans. fuzzy systems, 6, 2, 1-16, (1998)
[52] Tanaka, K.; Wang, H.O., Fuzzy control systems design and analysis. A linear matrix inequality approach, (2001), Wiley New York
[53] Tanaka, K.; Wang, H.O., Fuzzy control systems design and analysis: a LMI approach, (2001), Wiley New York
[54] Tong, R.M.; Beck, M.B.; Latten, A., Fuzzy control of the activated sludge wastewater treatment process, Automatica, 16, 659-701, (1980) · Zbl 0468.76131
[55] S. Tong, H.X. Li, Direct adaptive fuzzy output tracking control of nonlinear systems, Fuzzy Sets Systems (128) (2002) 107-115. · Zbl 0995.93512
[56] S. Tong, J. Tang, T. Wang, Fuzzy adaptive control of multivariable nonlinear systems, Fuzzy Sets Systems (111) (2000) 153-167. · Zbl 0976.93049
[57] Tong, S.; Wang, T.; Li, H.X., Fuzzy robust tracking control for uncertain nonlinear systems, Internat. J. approximative reasoning, 30, 73-90, (2002) · Zbl 1008.93050
[58] Tuan, H.D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y., Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE trans. fuzzy systems, 9, 2, 324-332, (2001)
[59] Valente de Oliveira, J., Semantic constraints for membership function optimization, IEEE trans. fuzzy systems, 19, 1, 128-138, (1999)
[60] Wang, L.X., Stable adaptive fuzzy control of nonlinear systems, IEEE trans. fuzzy systems, 1, 2, 146-154, (1993)
[61] Wang, L.X., Stable adaptive fuzzy controllers with application to inverted pendulum tracking, IEEE trans. systems man cybernet., 26, 5, 677-691, (1996)
[62] Yen, J.; Wang, L., Simplifying fuzzy rule-based models using orthogonal transformation methods, IEEE trans. systems man cybernet. part B: cybernet., 29, 1, 13-24, (1999)
[63] Yi, Z.; Heng, P.A., Stability of fuzzy control systems with bounded uncertain delays, IEEE trans. fuzzy systems, 10, 1, 92-96, (2002) · Zbl 1142.93377
[64] Yin, T.K.; Lee, C.S.G., Fuzzy model reference adaptive control, IEEE trans. systems man cybernet., 25, 12, 1606-1615, (1995)
[65] Zadeh, L.A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE trans. systems man cybernet., 1, 28-44, (1973) · Zbl 0273.93002
[66] J. Zhao, Fuzzy logic in modeling and control, Ph.D. dissertation, CESAME, Louvain la Neuve, Belgium, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.