Fridman, E.; Shaked, U. Stability and guaranteed cost control of uncertain discrete delay systems. (English) Zbl 1083.93045 Int. J. Control 78, No. 4, 235-246 (2005). Linear discrete-time systems with uncertain delay and norm-bounded parameter perturbations are considered. First, linear matrix inequality conditions for asymptotic stability are derived for the delay-dependent and delay-independent cases. Then these results are extended to the guaranteed quadratic cost control by constant state feedback. Examples are provided to illustrate the application of the theory developed. Reviewer: Edwin Engin Yaz (Milwaukee) Cited in 47 Documents MSC: 93D09 Robust stability 93D21 Adaptive or robust stabilization 93C55 Discrete-time control/observation systems 93C05 Linear systems in control theory 15A39 Linear inequalities of matrices Keywords:robust stability; adaptive or robust stabilization; discrete-time systems; linear systems; uncertain delay; linear matrix inequality; guaranteed quadratic cost control PDF BibTeX XML Cite \textit{E. Fridman} and \textit{U. Shaked}, Int. J. Control 78, No. 4, 235--246 (2005; Zbl 1083.93045) Full Text: DOI References: [1] DOI: 10.1049/ip-cta:20030572 · doi:10.1049/ip-cta:20030572 [2] DOI: 10.1016/S0167-6911(01)00114-1 · Zbl 0974.93028 · doi:10.1016/S0167-6911(01)00114-1 [3] Fridman E, Proceedings of MTNS (2004) [4] DOI: 10.1109/TAC.2002.804462 · Zbl 1364.93564 · doi:10.1109/TAC.2002.804462 [5] DOI: 10.3166/ejc.11.29-37 · Zbl 1293.93672 · doi:10.3166/ejc.11.29-37 [6] DOI: 10.1080/00207170410001663525 · Zbl 1066.93009 · doi:10.1080/00207170410001663525 [7] DOI: 10.1016/S0005-1098(98)00054-5 · Zbl 0934.93023 · doi:10.1016/S0005-1098(98)00054-5 [8] DOI: 10.1016/S0005-1098(02)00195-4 · Zbl 1014.93031 · doi:10.1016/S0005-1098(02)00195-4 [9] DOI: 10.1109/9.763213 · Zbl 0964.34065 · doi:10.1109/9.763213 [10] Lee YS, Proceedings of the 15th IFAC Congress on Automation and Control (2002) [11] DOI: 10.1016/S0005-1098(97)00082-4 · doi:10.1016/S0005-1098(97)00082-4 [12] DOI: 10.1016/S0005-1098(99)00158-2 · Zbl 0982.93032 · doi:10.1016/S0005-1098(99)00158-2 [13] DOI: 10.1080/00207170110067116 · Zbl 1023.93055 · doi:10.1080/00207170110067116 [14] Niculescu S-I, Delay Effects on Stability: A Robust Control Approach (2001) [15] DOI: 10.1016/S0005-1098(99)00057-6 · Zbl 0936.93019 · doi:10.1016/S0005-1098(99)00057-6 [16] DOI: 10.1016/0167-6911(94)00041-S · Zbl 0883.93035 · doi:10.1016/0167-6911(94)00041-S [17] Verriest E, Proceedings of the IEEE Conference on Decision and Control pp pp. 386–391– (1995) [18] DOI: 10.1109/9.286258 · Zbl 0807.93055 · doi:10.1109/9.286258 [19] DOI: 10.1080/00207179608921866 · Zbl 0841.93014 · doi:10.1080/00207179608921866 [20] DOI: 10.1016/j.sysconle.2003.08.002 · Zbl 1157.93371 · doi:10.1016/j.sysconle.2003.08.002 [21] DOI: 10.1016/S0005-1098(99)00061-8 · Zbl 0959.93048 · doi:10.1016/S0005-1098(99)00061-8 [22] DOI: 10.1016/S0898-1221(98)80041-2 · Zbl 0933.39011 · doi:10.1016/S0898-1221(98)80041-2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.