On recursive estimation for time varying autoregressive processes. (English) Zbl 1084.62089

Summary: This paper focuses on recursive estimation of time varying autoregressive processes in a nonparametric setting. The stability of the model is revisited and uniform results are provided when the time-varying autoregressive parameters belong to appropriate smoothness classes. An adequate normalization for the correction term used in the recursive estimation procedure allows for very mild assumptions on the innovations distributions. The rate of convergence of the pointwise estimates is shown to be minimax in \(\beta\)-Lipschitz classes for \(0<\beta\leq 1\). For \(1< \beta\leq 2\), this property no longer holds. This can be seen by using an asymptotic expansion of the estimation error. A bias reduction method is then proposed for recovering the minimax rate.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI arXiv


[1] Aguech, R., Moulines, E. and Priouret, P. (2000). On a perturbation approach for the analysis of stochastic tracking algorithm. SIAM J. Control Optim. 39 872–899. · Zbl 0972.60026
[2] Baranger, J. (1991). Analyse Numérique . Hermann, Paris. · Zbl 0757.65001
[3] Belitser, E. (2000). Recursive estimation of a drifted autoregressive parameter. Ann. Statist. 28 860–870. · Zbl 1105.62373
[4] Brockwell, P. J. and Davis, R. A. (1991). Time Series : Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[5] Dahlhaus, R. (1996). Asymptotic statistical inference for nonstationary processes with evolutionary spectra. Athens Conference on Applied Probability and Time Series Analysis 2 . Lecture Notes in Statist. 115 145–159. Springer, New York.
[6] Dahlhaus, R. (1996). On the Kullback–Leibler information divergence of locally stationary processes. Stochastic Process. Appl. 62 139–168. · Zbl 0849.60032
[7] Dahlhaus, R. (1997). Fitting time series models to non-stationary processes. Ann. Statist. 25 1–37. · Zbl 0871.62080
[8] Dahlhaus, R. and Giraitis, L. (1998). On the optimal segment length for parameter estimates for locally stationary time series. J. Time Ser. Anal. 19 629–655. · Zbl 0921.62107
[9] Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications. Stochastic Process. Appl. 106 63–80. · Zbl 1075.60513
[10] Dunford, N. and Schwartz, J. T. (1958). Linear Operators 1 . Wiley, New York. · Zbl 0084.10402
[11] Gill, R. D. and Levit, B. Y. (1995). Applications of the van Trees inequality: A Bayesian Cramér–Rao bound. Bernoulli 1 59–79. · Zbl 0830.62035
[12] Grenier, Y. (1983). Time-dependent ARMA modeling of nonstationary signals. IEEE Trans. Acoustics, Speech and Signal Processing 31 899–911.
[13] Guo, L. (1994). Stability of recursive stochastic tracking algorithms. SIAM J. Control Optim. 32 1195–1225. · Zbl 0814.93073
[14] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[15] Hallin, M. (1978). Mixed autoregressive-moving average multivariate processes with time-dependent coefficients. J. Multivariate Anal. 8 567–572. · Zbl 0394.62067
[16] Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis . Cambridge Univ. Press. · Zbl 0729.15001
[17] Kailath, T. (1980). Linear Systems . Prentice Hall, Englewood Cliffs, NJ. · Zbl 0454.93001
[18] Kushner, H. and Yin, G. (1997). Stochastic Approximation Algorithms and Applications . Springer, New York. · Zbl 0914.60006
[19] Ljung, L. and Söderström, T. (1983). Theory and Practice of Recursive Identification . MIT Press, Cambridge, MA. · Zbl 0548.93075
[20] Priouret, P. and Veretennikov, A. Y. (1995). A remark on stability of the LMS tracking algorithm. Stoch. Anal. Appl. 16 118–128. · Zbl 0907.93065
[21] Solo, V. and Kong, X. (1995). Adaptive Signal Processing Algorithms : Stability and Performance . Prentice Hall, Englewood Cliffs, NJ. · Zbl 0084.10402
[22] Subba Rao, T. (1970). The fitting of non-stationary time-series models with time-dependent parameters. J. Roy. Statist. Soc. Ser. B 32 312–322. · Zbl 0225.62109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.