×

Pricing discrete dynamic fund protections. (English) Zbl 1084.91506


MSC:

91B28 Finance etc. (MSC2000)
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramowitz Milton, Handbook of Mathematical Functions (1972)
[2] Ben-Ameur Hatem, Management Science 48 (5) pp 625– (2002) · Zbl 1232.91645
[3] Boyle Phelim P., North American Actuarial Journal 5 (3) pp 1– (2001)
[4] Bratley Paul, ACM Transactions on Mathematical Software 14 (1) pp 88– (1988) · Zbl 0642.65003
[5] Broadie Mark, Finance and Stochastics 3 pp 55– (1999) · Zbl 0924.90007
[6] Cox , John C. 1975 . ” Notes on Option Pricing I: Constant Elasticity of Variance Diffusions ” . Stanford University Working paper
[7] Cox John C., The Journal of Portfolio Management 22 (5) pp 15– (1996)
[8] Gerber Hans U., North American Actuarial Journal 4 (2) pp 28– (2000) · Zbl 1083.91516
[9] Gerber Hans U., North American Actuarial Journal 2 (3) pp 101– (1998) · Zbl 1081.91528
[10] Gerber Hans U., Insurance: Mathematics & Economics 24 pp 3– (1999) · Zbl 0939.91065
[11] DOI: 10.1080/10920277.2003.10596076 · Zbl 1084.91507
[12] Gerber Hans U., North American Actuarial Journal 7 (2) pp 60– (2003) · Zbl 1084.60512
[13] Hardy , Mary R. 2003 . ” Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance ” . Ontario : John Wiley & Sons . · Zbl 1092.91042
[14] Imai Junichi, North American Actuarial Journal 5 (3) pp 31– (2001) · Zbl 1083.60513
[15] Joe Stephen, ACM Transactions on Mathematical Software 29 (1) (2003)
[16] Press William, Numerical Recipes in C, 2. ed. (1993)
[17] Sullivan Michael A., Review of Financial Studies 13 pp 75– (2000)
[18] Sullivan Michael A., Journal of Computational Finance 3 (4) pp 35– (2000)
[19] Tiong Serena, North American Actuarial Journal 4 (4) pp 149– (2000) · Zbl 1083.62545
[20] Tse Wai Man, Management Science 47 (3) pp 383– (2001) · Zbl 1232.91677
[21] Windcliff Heath, North American Actuarial Journal 6 (2) pp 107– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.