×

zbMATH — the first resource for mathematics

Global synchronization criterion and adaptive synchronization for new chaotic system. (English) Zbl 1086.37512
Summary: This paper proposes two schemes of synchronization of two four-scroll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scroll chaotic attractor system with a unidirectional linear error feedback coupling. These methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93D21 Adaptive or robust stabilization
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hubler, A.W., Adaptive control of chaotic system [J], Helv. phys. acta, 62, 343-346, (1989)
[2] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos [J], Phys. rev. lett., 64, 1196-1199, (1990) · Zbl 0964.37501
[3] Pecora, L.M.; Carroll, T.M., Synchronization of chaotic systems, Phys. rev. lett., 64, 8, 821-830, (1990) · Zbl 0938.37019
[4] Carroll, T.L.; Pecora, L.M., Synchronizing a chaotic systems, IEEE trans. circuits systems, 38, 453-456, (1991)
[5] Chen, G.; Dong, X., From chaos to order, (1998), World Scientific Singapore
[6] Hu, G.; Xiao, J.; Zheng, Z., Chaos control, (2000), Shanghai Scientific and Technological Education Publishing House China
[7] Wang, G.; Yu, X.; Chen, S., Chaos control, synchronization and its application, (2001), National Defense Industry Publishing House China
[8] Lu, J.; Lu, J.; Chen, S., Chaotic time series analysis and its application, (2002), Wuhan University Press China
[9] Chen, G.; Xie, Q., Synchronization stability analysis of the chaotic rossler system, Int. J. bifur. chaos, 6, 11, 2153-2161, (1996) · Zbl 1298.34096
[10] Elabbasy, E.M.; Agiza, H.N.; El-Dessoky, M.M., Synchronization of modified Chen system, Int. J. bifur. chaos, 14, 11, (2004) · Zbl 1090.37516
[11] Liao, T.-L.; Tsai, S.-H., Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, solitons & fractals, 11, 9, 1387-1396, (2000) · Zbl 0967.93059
[12] Jiang, G.-P.; Chen, G.; Tang, K.S., A new criterion for chaos synchronization using linear state feedback control, Int. J. bifur. chaos, 13, 8, 2343-2351, (2002) · Zbl 1064.37515
[13] Elabbasy, E.M.; Agiza, H.N.; El-Dessoky, M.M., Adaptive synchronization of Lü system with uncertain parameters, Chaos, solitons & fractals, 21, 657-667, (2004) · Zbl 1062.34039
[14] Liao, T., Adaptive synchronization of two Lorenz systems, Chaos, solitons & fractals, 9, 1555-1561, (1998) · Zbl 1047.37502
[15] Agiza, H.N.; Yassen, M.T., Synchronization of rossler and Chen chaotic dynamical systems using active control, Chaos, solitons & fractals, 9, 1555-1561, (1998) · Zbl 0972.37019
[16] Elabbasy, E.M.; Agiza, H.N.; El-Dessoky, M.M., Controlling and synchronization of rossler system with uncertain parameters, Int. J. nonlinear sci. numer. simulat., 5, 2, 171-181, (2004) · Zbl 1062.34039
[17] Jiang, G.P.; Tang, K.S., A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach, Int. J. bifur. chaos, 12, 10, 2239-2253, (2002) · Zbl 1052.34053
[18] Jiang, G.P.; Tang, K.S.; Chen, G.R., A simple global synchronization criterion for coupled chaotic systems, Chaos, solitons & fractals, 15, 925-935, (2003) · Zbl 1065.70015
[19] Sun, J.; Zhang, Y., Some simple global synchronization criterion for coupled time-varying chaotic systems, Chaos, solitons & fractals, 19, 93-98, (2004) · Zbl 1069.34068
[20] Chen, G.; Ueta, T., Yet another chaotic attractor, Int. J. bifur. chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
[21] Lu, J.; Chen, G., A new chaotic attractor coined, Int. J. bifur. chaos, 12, 3, 659-661, (2002) · Zbl 1063.34510
[22] Vanĕŏek; Čelikovský, Control systems: from linear analysis to synthesis of chaos, (1996), Prentice-Hall London
[23] Sparrow, C., The Lorenz equations: bifurcations, chaos, and strange attractors, (1982), Springer-Verlag New York · Zbl 0504.58001
[24] Lorenz, E.N., Deterministic nonperiodic flows, J. atmos. sci., 20, 130-141, (1963) · Zbl 1417.37129
[25] Lu, J.; Chen, G.; Cheng, D.; Čelikovský, S., Bridge the gap between the Lorenz system and the Chen system, Int. J. bifur. chaos, 12, 2917-2926, (2002) · Zbl 1043.37026
[26] Liu, W.; Chen, G., Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?, Int. J. bifur. chaos, 14, 4, (2004) · Zbl 1086.37516
[27] Lü J, Chen G, Chen DZ. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifur Chaos, in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.