## Fixed point theory for generalized contractive maps of Meir–Keeler type.(English)Zbl 1086.47016

Let $$(X,d)$$ be a complete metric space, $$x_{0} \in X$$, $$r > 0$$ and let $$B$$ denote the closed ball centered at $$x_{0}$$ and with radius $$r$$. Assume that $$F: B \to X$$ and $M(x,y):= \max\{d(x,y), d(x,F(x)), d(y,F(y)), \tfrac{1}{2}(d(x,F(y)) + d(y,F(x)))\}.$ The authors prove the following results:
(1) If $$F$$ is continuous, $$d(x_{0},F^{n}(x_{0})) < r$$ for $$n = 1, 2,\dots$$, and for every $$\varepsilon > 0$$ there exists $$\delta > 0$$ such that for $$x,y \in B$$ we have $M(x,y) < \varepsilon + \delta \Rightarrow d(F(x), F(y)) < \varepsilon,$ then there exists a unique fixed point of $$F$$ in $$B$$.
(2) If $$x_{n} = F(x_{n-1})$$ for $$n = 1, 2,\dots$$ and $$x_{n} \to x$$ implies that $$x = F(x)$$ and either (a) $$\Phi: X \to [0,\infty)$$ is a function such that $d(x,F(x)) \leq \Phi(x) - \Phi(F(x))$ and $\Phi(x_{0}) < r,$ or (b) for $$x \in B$$ we have $d(F(x), F^{2}(x)) \leq kd(x,F(x))$ and $$d(x_{0}, F(x_{0})) < (1-k)r$$ for some $$k \in (0,1)$$, then there exists a fixed point of $$F$$ in $$B$$.
There are some global versions of these results. Some of them are extended to gauge spaces. Domain invariance, coincidence points and Krasnosel’skii type fixed point results are also given. Finally, random fixed point theorems are presented.

### MSC:

 47H10 Fixed-point theorems 47H09 Contraction-type mappings, nonexpansive mappings, $$A$$-proper mappings, etc. 54H25 Fixed-point and coincidence theorems (topological aspects)
Full Text:

### References:

 [1] Domain invariance theorems for contractive type maps, Dynam. Systems Appl., to appear (2004). [2] Agarwal, Appl. Anal. 83 pp 711– (2004) [3] Random Integral Equations (Academic Press, New York, 1972). [4] Bollenbacher, Proc. Amer. Math. Soc. 102 pp 898– (4) [5] Boyd, Proc. Amer. Math. Soc. 20 pp 458– (1969) [6] Caristi, Trans. Amer. Math. Soc. 215 pp 241– (1976) [7] Topology (Allyn and Bacon Inc., Boston, Mass., 1966). [8] Random operator equations, in: Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II (Univ. California Press, Berkeley, Calif., 1961), pp. 185-202. [9] Hao, Results Math. 25 pp 290– (1994) · Zbl 0808.47042 [10] Hicks, Math. Japon. 24 pp 327– (1979) [11] Lin, Proc. Amer. Math. Soc. 103 pp 1129– (4) [12] Liu, J. Math. Anal. Appl. 188 pp 541– (2) [13] Meir, J. Math. Anal. Appl. 28 pp 326– (1969) [14] O’Regan, Proc. Amer. Math. Soc. 126 pp 3045– (10) [15] Sehgal, Proc. Amer. Math. Soc. 90 pp 425– (3) [16] Some general random coincidence point theorems, New Zealand J. Math., to appear (2004). · Zbl 1083.47047 [17] Shahzad, J. Math. Anal. Appl. 237 pp 83– (1) [18] Tan, Acta Math. Vietnam. 26 pp 231– (2) [19] Tan, J. Math. Anal. Appl. 185 pp 378– (2) [20] Tân, Acta Math. Vietnam. 3 pp 24– (1) [21] Watson, Indian J. Pure Appl. Math. 17 pp 1092– (9)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.