×

zbMATH — the first resource for mathematics

Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. (English) Zbl 1086.74038
Summary: A new finite element method for fourth-order elliptic partial differential equations is presented and applied to thin bending theory problems in structural mechanics and to a strain gradient theory problem. The method combines concepts from the continuous Galerkin (CG) method, the discontinuous Galerkin (DG) method and stabilization techniques.
A brief review of the CG method, the DG method and stabilization techniques highlights the advantages and disadvantages of these methods and suggests a new approach for the solution of fourth-order elliptic problems. A continuous/discontinuous Galerkin (C/DG) method is proposed which uses \(C^0\)-continuous interpolation functions and is formulated in the primary variable only. The advantage of this formulation over a more traditional mixed approach is that the introduction of additional unknowns and related difficulties can be avoided. In the context of thin bending theory, the C/DG method leads to a formulation where displacements are the only degrees of freedom, and no rotational degrees of freedom need to be considered.
The main feature of the C/DG method is the weak enforcement of continuity of first and higher-order derivatives through stabilizing terms on interior boundaries. Consistency, stability and convergence of the method are shown analytically. Numerical experiments verify the theoretical results, and applications are presented for Bernoulli-Euler beam bending, Poisson-Kirchhoff plate bending and a shear layer problem using Toupin-Mindlin strain gradient theory.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
74B99 Elastic materials
Software:
FEAP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zauderer, E., Partial differential equations of applied mathematics, (1989), Wiley New York · Zbl 0699.35003
[2] Encyclopaedia Britannica, 2001, Solids Mechanics/History/Beams, Columns, Plates, and Shells, http://www.britannica.com
[3] Toupin, R.A., Elastic materials with couple-stresses, Archive for rational mechanics and analysis, 11, 385-414, (1962) · Zbl 0112.16805
[4] Mindlin, R.D., Micro-structure in linear elasticity, Archive for rational mechanics and analysis, 16, 51-78, (1964) · Zbl 0119.40302
[5] Sokolnikoff, I.S., Mathematical theory of elasticity, (1983), Krieger Publishing Malabar, FL · Zbl 0499.73006
[6] Timoshenko, S.; Goodier, J.N., Theory of elasticity, (1951), McGraw-Hill New York · Zbl 0045.26402
[7] Nádai, A., Die elastischen platten, (1925), Springer Berlin · JFM 51.0632.01
[8] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells, (1959), McGraw-Hill New York · Zbl 0114.40801
[9] Ugural, A.C., Stresses in plates and shells, (1981), McGraw-Hill New York · Zbl 0486.73003
[10] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Mineola, New York
[11] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth-Heinemann Oxford · Zbl 0991.74002
[12] Fleck, N.A.; Hutchinson, J.W., Strain gradient plasticity, Advances in applied mechanics, 33, 295-361, (1997) · Zbl 0894.73031
[13] Fortin, M.; Brezzi, F., Mixed and hybrid finite element methods, (1991), Springer New York · Zbl 0788.73002
[14] Babuška, I., Error-bounds for finite element method, Numerische Mathematik, 16, 322-333, (1970/1971) · Zbl 0214.42001
[15] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Revue française d’automation, information, recherche opérationnelle, Séries rouge, 8, R-2, 129-151, (1974) · Zbl 0338.90047
[16] Malkus, D.S; Hughes, T.J.R., Mixed finite-element methods–reduced and selective integration techniques: unification of concepts, Computer methods in applied mechanics and engineering, 15, 1, 63-81, (1978) · Zbl 0381.73075
[17] Hughes, T.J.R.; Franca, L.P., A mixed finite element formulation for reissner – mindlin plate theory: uniform convergence of all higher-order spaces, Computer methods in applied mechanics and engineering, 67, 2, 223-240, (1988) · Zbl 0611.73077
[18] Arnold, D.N.; Falk, R.S., A uniformly accurate finite element method for the reissner – mindlin plate, SIAM journal on numerical analysis, 26, 6, 1276-1290, (1989) · Zbl 0696.73040
[19] Shu, J.Y.; King, W.E.; Fleck, N.A., Finite elements for materials with strain gradient effects, International journal for numerical methods in engineering, 44, 3, 73-391, (1999) · Zbl 0943.74072
[20] Batoz, J.L.; Bathe, K.J.; Ho, L.W., A study of 3-node triangular plate bending elements, International journal for numerical methods in engineering, 15, 12, 1771-1812, (1980) · Zbl 0463.73071
[21] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[22] Phaal, R.; Calladine, C.R., A simple class of finite-elements for plate and shell problems. 1. elements for beams and thin flat plates, International journal for numerical methods in engineering, 35, 5, 955-977, (1992) · Zbl 0775.73285
[23] Phaal, R.; Calladine, C.R., A simple class of finite-elements for plate and shell problems. 2. an element for thin shells with only translational degrees of freedom, International journal for numerical methods in engineering, 35, 5, 979-996, (1992) · Zbl 0775.73286
[24] Oñate, E.; Cervera, M., Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle, Engineering computations, 10, 6, 543-561, (1993)
[25] Oñate, E.; Zarate, F., Rotation-free triangular plate and shell elements, International journal for numerical methods in engineering, 47, 1, 557-603, (2000) · Zbl 0968.74070
[26] Babuška, I.; Zlámal, M., Nonconforming elements in the finite element method with penalty, SIAM journal on numerical analysis, 10, 863-875, (1973) · Zbl 0237.65066
[27] Baker, G.A., Finite element methods for elliptic equations using nonconforming elements, Mathematics of computation, 31, 137, 45-59, (1977) · Zbl 0364.65085
[28] Argyris, J.H., Die matrizentheorie der statik, Ingenieur archiv, 25, 174-192, (1957) · Zbl 0078.38001
[29] Argyris, J.H., Energy theorems and structural analysis, (1960), Butterworth London
[30] Zienkiewicz, O.C.; Cheung, Y.K., The finite element method in structural and continuum mechanics, (1967), McGraw-Hill London · Zbl 0189.24902
[31] Courant, R., Variational methods for the solution of problems of equilibrium and vibrations, Bulletin of the American mathematical society, 49, 1-23, (1943) · Zbl 0810.65100
[32] Brenner, S.C.; Scott, L.R., The mathematical theory of finite element methods, (1994), Springer New York · Zbl 0804.65101
[33] Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications, vol. I, (1972), Springer New York, (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181) · Zbl 0223.35039
[34] Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications, vol. II, (1972), Springer New York, (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182) · Zbl 0227.35001
[35] Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications, vol. III, (1973), Springer New York, (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183) · Zbl 0251.35001
[36] Hughes, T.J.R.; Hulbert, G.M., Space – time finite element methods for elastodynamics: formulations and error estimates, Computer methods in applied mechanics and engineering, 66, 3, 339-363, (1988) · Zbl 0616.73063
[37] Hulbert, G.M.; Hughes, T.J.R., Space – time finite element methods for second-order hyperbolic equations, Computer methods in applied mechanics and engineering, 84, 3, 327-348, (1990) · Zbl 0754.73085
[38] W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973
[39] Lesaint, P.; Raviart, P.-A., On a finite element method for solving the neutron transport equation, (), 89-123
[40] P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d’eléments finis, Ph.D. thesis, Université de Paris VI, Paris, France, 1975
[41] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Computer methods in applied mechanics and engineering, 45, 285-312, (1984) · Zbl 0526.76087
[42] Johnson, C.; Pitkäranta, J., An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Mathematics of computation, 46, 173, 1-26, (1986) · Zbl 0618.65105
[43] Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J., Incompatible displacement models, (), 43-57
[44] Lesaint, P., On the convergence of Wilson’s non-conforming element for solving the elastic problem, Computer methods in applied mechanics and engineering, 7, 1-16, (1976) · Zbl 0345.65058
[45] Kikuchi, F.; Ando, Y., A new variational functional for the finite element method, Nuclear engineering and design, 21, 95-113, (1972)
[46] Cockburn, B.; Shu, C.W., TVB runge – kutta local projection discontinuous Galerkin finite element methods for conservation laws. II: general framework, Mathematics of computation, 52, 411-435, (1989) · Zbl 0662.65083
[47] Bey, K.S.; Oden, J.T., hp-version discontinuous Galerkin methods for hyperbolic conservation laws, Computer methods in applied mechanics and engineering, 133, 259-286, (1996) · Zbl 0894.76036
[48] P. Houston, C. Schwab, E. Suli, Stabilized hp-finite element methods for first-order hyperbolic problems, Technical Report 98/14, Oxford University Computing Laboratory, Oxford, England, November 1998 · Zbl 0957.65103
[49] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, Journal of computational physics, 138, 251-285, (1997) · Zbl 0902.76056
[50] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier – stokes equations, Journal of computational physics, 131, 267-279, (1997) · Zbl 0871.76040
[51] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numerical methods for partial differential equations, 16, 4, 365-378, (2000) · Zbl 0957.65099
[52] Cockburn, B.; Shu, C.W., The local discontinuous Galerkin finite element method for time-dependent convection – diffusion systems, SIAM journal on numerical analysis, 35, 2440-2463, (1998) · Zbl 0927.65118
[53] Nitsche, J.A., Über ein variationsprinzip zur Lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem mathematischen seminar der universität Hamburg, 36, 9-15, (1971) · Zbl 0229.65079
[54] Babuška, I., The finite element method with penalty, Mathematics of computation, 27, 221-228, (1973) · Zbl 0299.65057
[55] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, (), 207-216
[56] Wheeler, M.F., An elliptic collocation-finite element method with interior penalties, SIAM journal on numerical analysis, 15, 1, 152-161, (1978) · Zbl 0384.65058
[57] Percell, P.; Wheeler, M.F., A local residual finite element procedure for elliptic equations, SIAM journal on numerical analysis, 15, 4, 705-714, (1978) · Zbl 0396.65067
[58] D.N. Arnold, An interior penalty finite element method with discontinuous elements, Ph.D. thesis, University of Chicago, Chicago, Illinois, 1979
[59] Arnold, D.N., An interior penalty finite element method with discontinuous elements, SIAM journal on numerical analysis, 19, 4, 742-760, (1982) · Zbl 0482.65060
[60] Delves, L.M.; Hall, C.A., An implicit matching principle for global element calculations, Journal of the institute of mathematics and its applications, 23, 2, 223-234, (1979) · Zbl 0443.65087
[61] C.E. Baumann, An hp-adaptive discontinuous finite element method for computational fluid mechanics, Ph.D. thesis, The University of Texas at Austin, Austin, Texas, 1997
[62] Babuška, I.; Baumann, C.E.; Oden, J.T., A discontinuous hp finite element method for diffusion problems: 1-D analysis, Computers and mathematics with applications, 37, 9, 103-122, (1999) · Zbl 0940.65076
[63] Oden, J.T.; Babuška, I.; Baumann, C.E., A discontinuous hp finite element method for diffusion problems, Journal of computational physics, 146, 2, 491-519, (1998) · Zbl 0926.65109
[64] Baumann, C.E.; Oden, J.T., A discontinuous hp finite element method for the Euler and navier – stokes equations, International journal for numerical methods in fluids, 31, 1, 79-95, (1999) · Zbl 0985.76048
[65] Baumann, C.E.; Oden, J.T., A discontinuous hp finite element method for convection – diffusion problems, Computer methods in applied mechanics and engineering, 175, 3-4, 311-341, (1999) · Zbl 0924.76051
[66] Baumann, C.E.; Oden, J.T., An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics, International journal for numerical methods in engineering, 47, 1-3, 61-73, (2000) · Zbl 0984.76040
[67] Prudhomme, S.; Pascal, F.; Oden, J.T.; Romkes, A., A priori error estimate for the baumann – oden version of the discontinuous Galerkin method, Comptes rendus de I’academie des sciences, serie I, mathématique, 332, 851-856, (2001) · Zbl 1007.65084
[68] Arnold, D.N.; Brezzi, F.; Cockburn, B.; Marini, D., Discontinuous Galerkin methods for elliptic problems, (), 89-101 · Zbl 0948.65127
[69] Freund, J., The space-continuous – discontinuous Galerkin method, Computer methods in applied mechanics and engineering, 190, 26-27, 3461-3473, (2001) · Zbl 1011.76043
[70] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Computer methods in applied mechanics and engineering, 32, 1-3, 199-259, (1982) · Zbl 0497.76041
[71] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics. VIII. the Galerkin/least-squares method for advective – diffusive equations, Computer methods in applied mechanics and engineering, 73, 2, 173-189, (1989) · Zbl 0697.76100
[72] Hughes, T.J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer methods in applied mechanics and engineering, 127, 1-4, 387-401, (1995) · Zbl 0866.76044
[73] Brezzi, F.; Russo, A., Choosing bubbles for advection – diffusion problems, Mathematical models and methods in applied sciences, 4, 4, 571-587, (1994) · Zbl 0819.65128
[74] Brezzi, F.; Franca, L.P.; Hughes, T.J.R.; Russo, A., Stabilization techniques and subgrid scales capturing, (), 391-406 · Zbl 0881.65100
[75] Brezzi, F.; Franca, L.P.; Hughes, T.J.R.; Russo, A., b=∫g, Computer methods in applied mechanics and engineering, 145, 3-4, 329-339, (1997) · Zbl 0904.76041
[76] Franca, L.P.; Russo, A., Unlocking with residual-free bubbles, Computer methods in applied mechanics and engineering, 142, 3-4, 361-364, (1997) · Zbl 0890.73064
[77] Franca, L.P.; Russo, A., Mass lumping emanating from residual-free bubbles, Computer methods in applied mechanics and engineering, 142, 3-4, 353-360, (1997) · Zbl 0883.65086
[78] Franca, L.P.; Russo, A., Approximation of the Stokes problem by residual-free macro-bubbles, East – west journal of numerical mathematics, 4, 4, 265-278, (1996) · Zbl 0869.76038
[79] Franca, L.P.; Russo, A., Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Applied mathematics letters, 9, 5, 83-88, (1996) · Zbl 0903.65082
[80] De Mulder, T., Stabilized finite element methods (SUPG, GLS) for incompressible flows, ()
[81] Kreyszig, E., Introductory functional analysis with applications, (1989), Wiley New York · Zbl 0706.46001
[82] Franca, L.P.; Frey, S.L.; Hughes, T.J.R., Stabilized finite element methods. I. application to the advective – diffusive model, Computer methods in applied mechanics and engineering, 95, 2, 253-276, (1992) · Zbl 0759.76040
[83] Oden, J.T.; Demkowicz, L.F., Applied functional analysis, (1996), CRC Press Boca Raton, FL · Zbl 0851.46001
[84] Hughes, T.J.R.; Engel, G.; Mazzei, L.; Larson, M.G., A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, (), 135-146 · Zbl 0946.65109
[85] Stenberg, R., On some techniques for approximating boundary conditions in the finite element method, Journal of computational and applied mathematics, 63, 139-148, (1995) · Zbl 0856.65130
[86] Stenberg, R., Mortaring by a method of J.A. Nitsche, ()
[87] D.N. Arnold, R. Falk, R. Scott, 1985, private communication
[88] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective – diffusive systems, Computer methods in applied mechanics and engineering, 63, 1, 97-112, (1987) · Zbl 0635.76066
[89] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, () · Zbl 0779.73004
[90] Cosserat, E.; Cosserat, F., Sur la mécanique génerale, Comptes rendus de I’academie des sciences, serie I, mathématique, 145, 1139-1142, (1907) · JFM 38.0693.01
[91] Cosserat, E.; Cosserat, F., Theorie des corps Déformables, (1909), Hermann Paris · JFM 40.0862.02
[92] Truesdell, C.; Toupin, R.A., Principles of classical mechanics and field theory, () · Zbl 0134.44403
[93] Eringen, A.C., Continuum physics, vol. 4: polar and nonlocal field theories, (1976), New York Academic Press
[94] de Borst, R.; Sluys, L.J., Localisation in a Cosserat continuum under static and dynamic loading conditions, Computer methods in applied mechanics and engineering, 90, 805-827, (1991)
[95] Cauchy, A.L., Note sur léquilibre et LES mouvements vibratoires des corps solids, Comptes rendus de I’academie des sciences. serie I, mathématique, 32, 323-326, (1851)
[96] Stelmashenko, N.A.; Walls, M.G.; Brown, L.M.; Milman, Y.V., Microindentation studies on W and mo oriented single crystals, Acta metallurgica et materialia, 41, 2855-2865, (1993)
[97] Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W., Strain gradient plasticity: theory and experiment, Acta metallurgica et materialia, 42, 475-487, (1994)
[98] Stolken, J.S.; Evans, A.G., Microbend test method for measuring the plasticity length scale, Acta materialia, 46, 5109-5115, (1998)
[99] Gao, H.; Huang, Y.; Nix, W.D., Mechanism-based strain gradient plasticity. I. theory, Journal of the mechanics and physics of solids, 47, 1239-1263, (1999) · Zbl 0982.74013
[100] Huang, Y.; Gao, H.; Nix, W.D.; Hutchinson, J.W., Mechanism-based strain gradient plasticity. II. analysis, Journal of the mechanics and physics of solids, 48, 99-128, (2000) · Zbl 0990.74016
[101] Xia, Z.C.; Hutchinson, J.W., Crack tip fields in strain gradient plasticity, Journal of the mechanics and physics of solids, 44, 1621-1648, (1996)
[102] Chen, J.S.; Wu, C.T.; Belytschko, T., Regularization of material instabilities by mesh free approximations with intrinsic length scales, International journal for numerical methods in engineering, 47, 1303-1322, (2000) · Zbl 0987.74079
[103] Askes, H.; Pamin, J.; de Borst, R., Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models, International journal for numerical methods in engineering, 49, 811-832, (2000) · Zbl 1009.74082
[104] Li, S.; Liu, W.K., Reproducing kernel hierarchical partition of unity, part II: applications, International journal for numerical methods in engineering, 45, 289-317, (1999)
[105] Li, S.; Liu, W.K., Reproducing kernel hierarchical partition of unity, part I: formulation and theory, International journal for numerical methods in engineering, 45, 251-288, (1999)
[106] Hughes, T.J.R.; Engel, G.; Mazzei, L.; Larson, M.G., The continuous Galerkin method is locally conservative, Journal of computational physics, 163, 2, 467-488, (2000) · Zbl 0969.65104
[107] Harari, I.; Hughes, T.J.R., What are C and h?: inequalities for the analysis and design of finite element methods, Computer methods in applied mechanics and engineering, 97, 2, 157-192, (1992) · Zbl 0764.73083
[108] Ciarlet, P.G., Basic error estimates for elliptic problems, () · Zbl 0875.65086
[109] Arnold, D.N., An interior penalty finite element method with discontinuous elements, SIAM journal on numerical analysis, 19, 742-760, (1982) · Zbl 0482.65060
[110] Agmon, S., Lectures on elliptic boundary value problems, (1965), Van Nostrand Princeton, NJ · Zbl 0151.20203
[111] M. Lyly, Stabilized finite element methods for plate bending problems, Ph.D. thesis, Helsinki University of Technology, Espoo, Finland, 1999
[112] Lyly, M.; Stenberg, R.; Vihinen, T., A stable bilinear element for the reissner – mindlin plate model, Computer methods in applied mechanics and engineering, 110, 343-357, (1993) · Zbl 0846.73065
[113] Hirsch, Ch., Numerical computation of internal and external flows, (1988), Wiley New York
[114] R.L. Taylor, FEAP-A Finite Element Analysis Program, Programmer Manual, University of California Berkeley, http://www.ce.berkeley.edu/∼rlt
[115] Taylor, R.L., Solution of linear equations by a profile solver, Engineering computations, 4, 344-350, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.