×

zbMATH — the first resource for mathematics

An affine scaling trust-region algorithm with interior backtracking technique for solving bound-constrained nonlinear systems. (English) Zbl 1087.65047
The author introduces a new affine scaling trust-region algorithm for solving systems of nonlinear equations subject to constraints. Trust-region strategy and nonmonotonic interior backtracking line search techniques are combined nicely in this new algorithm. The global convergence is proven. Quadratic local convergence is established under certain conditions. Numerical results demonstrate the effectiveness of this method.
Reviewer: Zhen Mei (Toronto)

MSC:
65H10 Numerical computation of solutions to systems of equations
65K05 Numerical mathematical programming methods
90C51 Interior-point methods
Software:
GQTPAR; STRSCNE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bellavia, S.; Macconi, M.; Morini, B., An affine scaling trust-region approach to bound-constrained nonlinear systems, Appl. numer. math., 44, 257-280, (2003) · Zbl 1018.65067
[2] Brown, P.N.; Saad, Y., Convergence theory of nonlinear newton – kryloy algorithms, SIAM J. optim., 4, 297-330, (1994) · Zbl 0814.65048
[3] Coleman, T.F.; Li, Y., An interior trust-region approach for minimization subject to bounds, SIAM J. optim., 6, 3, 418-445, (1996) · Zbl 0855.65063
[4] Deng, N.Y.; Xiao, Y.; Zhou, F.J., A nonmonotonic trust-region algorithm, J. optim. theory appl., 76, 259-285, (1993) · Zbl 0797.90088
[5] Dennis, J.E.; Moré, J.J., Quasi-Newton methods, motivation and theory, SIAM rev., 19, 46-89, (1977) · Zbl 0356.65041
[6] Dennis, J.E.; Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations, (1983), Prentice-Hall Series in Computation, Mathematics Englewood Cliffs, NJ · Zbl 0579.65058
[7] Eisenstat, S.C.; Walker, H.F., Globally convergence inexact Newton methods, SIAM J. optim., 4, 393-422, (1994) · Zbl 0814.65049
[8] C.A. Floudas, et al., Handbook of Test Problems in Global Optimization, vol. 33, Kluwer Academic, Dordrecht, 1999. · Zbl 0943.90001
[9] Gripp, L.; Lampariello, F.; Lucidi, S., A nonmonotone line search technique for Newton’s methods, SIAM J. numer. anal., 23, 707-716, (1986) · Zbl 0616.65067
[10] Moré, J.J.; Sorensen, D.C., Computing a trust-region step, SIAM J. sci. statist. comput., 4, 553-572, (1983) · Zbl 0551.65042
[11] Nocedal, J.; Yuan, Y., Combining trust-region and line search techniques, (), 153-175 · Zbl 0909.90243
[12] Sorensen, D.C., Newton’s method with a model trust-region modification, SIAM J. numer. anal., 19, 409-426, (1982) · Zbl 0483.65039
[13] Zhu, D., Curvilinear paths and trust-region methods with nonmonotonic back tracking technique for unconstrained optimization, J. comput. math., 19, 241-258, (2001) · Zbl 0984.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.