Characterization of 1-greedy bases. (English) Zbl 1087.65048

The authors investigate 1-greedy bases for a real Banach space, i.e., bases for which the greedy algorithm provides the best \(m\)-term approximation. A characterization of 1-greediness is studied. The authors also give a list of open problems that arise from this article.


65J05 General theory of numerical analysis in abstract spaces
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
Full Text: DOI


[1] Dilworth, S.J.; Kalton, N.J.; Kutzarova, D.; Temlyakov, V.N., The thresholding greedy algorithm, greedy bases, and duality, Constr. approx., 19, 4, 575-597, (2003) · Zbl 1050.46011
[2] Figiel, T.; Johnson, W.B., A uniformly convex Banach space which contains no \(\ell_p\), Compositio math., 29, 2, 179-190, (1974) · Zbl 0301.46013
[3] Gamlen, J.L.B.; Gaudet, R.J., On subsequences of the Haar system, Israel J. math., 15, 404-413, (1973) · Zbl 0296.46031
[4] Garling, D.J.H., Symmetric bases of locally convex spaces, Studia math., 30, 163-181, (1968) · Zbl 0159.17703
[5] Kalton, N.J.; Leránoz, C.; Wojtaszczyk, P., Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, Israel J. math., 72, 299-311, (1990) · Zbl 0753.46013
[6] Konyagin, S.V.; Temlyakov, V.N., A remark on greedy approximation in Banach spaces, East J. approx., 5, 365-379, (1999) · Zbl 1084.46509
[7] Megginson, R.E., An introduction to Banach space theory, (1998), Springer New York, Berlin, Heidelberg · Zbl 0910.46008
[8] Temlyakov, V.N., The best \(m\)-term approximation and greedy algorithms, Adv. in comp. math., 8, 249-265, (1998) · Zbl 0905.65063
[9] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, UK, 1991. · Zbl 0724.46012
[10] Wojtaszczyk, P., Greedy algorithm for general biorthogonal systems, J. approx. theory, 107, 293-314, (2000) · Zbl 0974.65053
[11] P. Wojtaszczyk, Greedy Type Bases in Banach Spaces, Constructive Function Theory, Varna 2002, Darba, Sofia, 2002, pp. 1-20.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.