An unsplit Godunov method for ideal MHD via constrained transport. (English) Zbl 1087.76536

Summary: We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by area-averages at cell faces. We demonstrate that the fluxes of the area-averaged field used by CT can be made consistent with the fluxes of the volume-averaged field returned by a Riemann solver if they obey certain simple relationships. We use these relationships to derive new algorithms for constructing the CT fluxes at grid cell corners which reduce exactly to the equivalent one-dimensional solver for plane-parallel, grid-aligned flow. We show that the PPM reconstruction algorithm must include multidimensional terms for MHD, and we describe a number of important extensions that must be made to CTU in order for it to be used for MHD with CT. We present the results of a variety of test problems to demonstrate the method is accurate and robust.


76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics


Full Text: DOI arXiv Link


[1] D.S. Balsara, Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, astro-ph/0308249
[2] D.S. Balsara, J. Kim, An Intercomparison between divergence-cleaning and staggered mesh formulations for numerical magnetohydrodynamics, astro-ph/0310728
[3] Balsara, D.S.; Spicer, D.S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. comput. phys., 149, 270, (1999) · Zbl 0936.76051
[4] Brackbill, J.U.; Barnes, D.C., The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations, J. comput. phys., 35, 426, (1980) · Zbl 0429.76079
[5] Cargo, P.; Gallice, G., Roe matrices for ideal MHD and systematic construction of roe matrices for systems of conservation laws, J. comput. phys., 136, 446, (1997) · Zbl 0919.76053
[6] Clarke, D.A., A consistent method of characteristics for multidimensional magnetohydrodynamics, Astrophys. J., 457, 291, (1996)
[7] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. comput. phys., 87, 171, (1990) · Zbl 0694.65041
[8] Colella, P.; Woodward, P.R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. comput. phys., 54, 174, (1984) · Zbl 0531.76082
[9] Crockett, R.K.; Colella, P.; Fisher, R.T.; Klein, R.I.; McKee, C.F., An unsplit, cell-centered Godunov method for ideal MHD, J. comput. phys., 203, 422, (2005) · Zbl 1143.76599
[10] Dai, W.; Woodward, P.R., A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics, SIAM J. sci. comput., 18, 4, 957, (1997) · Zbl 0933.76056
[11] Dai, W.; Woodward, P.R., A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. comput. phys., 142, 331, (1998) · Zbl 0932.76048
[12] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. comput. phys., 175, 645, (2002) · Zbl 1059.76040
[13] Del Zanna, L.; Velli, M.; Londrillo, P., Parametric decay of circularly polarized Alfvén waves: multidimensional simulations in periodic and open domains, Astron. astrophys., 367, 705, (2001)
[14] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. numer. anal., 25, 2, 294, (1988) · Zbl 0642.76088
[15] Evans, C.R.; Hawley, J.F., Simulation of magnetohydrodynamic flows: a constrained transport method, Astrophys. J., 322, 659, (1988)
[16] Falle, S.A.E.G.; Komissarov, S.S.; Joarder, P., A multidimensional upwind scheme for magnetohydrodynamics, Month. notices R. astron. soc., 297, 265, (1998)
[17] Goldstein, M.L., An instability of finite amplitude circularly polarized Alfvén waves, Astrophys. J., 219, 700, (1978)
[18] Harten, A.; Lax, P.D.; Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 1, 35, (1983) · Zbl 0565.65051
[19] Langseth, J.O.; LeVeque, R.J., A wave propagation method for three-dimensional hyperbolic conservation laws, J. comput. phys., 165, 126, (2000) · Zbl 0967.65095
[20] Li, S., HLLC Riemann solver for magnetohydrodynamics, J. comput. phys., 203, 344, (2005) · Zbl 1299.76302
[21] Liska, R.; Wendroff, B., Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM J. sci. comput., 25, 3, 995, (2003) · Zbl 1096.65089
[22] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 508, (2000)
[23] Londrillo, P.; Del Zanna, L., On the divergence free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport algorithm, J. comput. phys., 195, 17, (2004) · Zbl 1087.76074
[24] Miller, G.H.; Colella, P., A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing, J. comput. phys., 183, 26, (2002) · Zbl 1057.76558
[25] Pen, U.; Arras, P.; Wong, S., A free, fast, simple and efficient TVD MHD code, Astrophys. J. suppl., 149, 447, (2003)
[26] Powell, K.G.; Roe, P.L.; Linde, T.J.; Gombosi, T.I.; De Zeeuw, D.L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. comput. phys., 154, 284, (1999) · Zbl 0952.76045
[27] Ryu, D.; Jones, T.W., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow, Astrophys. J., 442, 228, (1995)
[28] Ryu, D.; Miniati, F.; Jones, T.W.; Frank, A., A divergence-free upwind code for multidimensional magnetohydrodynamic flows, Astrophys. J., 509, 244, (1998)
[29] Saltzman, J., An unsplit 3D upwind method for hyperbolic conservation laws, J. comput. phys., 115, 153, (1994) · Zbl 0813.65111
[30] Sod, G.A., A survey of several finite difference schemes for hyperbolic conservation laws, J. comput. phys., 27, 1, (1978) · Zbl 0387.76063
[31] Stone, J.M.; Norman, M.L., ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. the magnetohydrodynamic algorithms and tests, Astrophys. J. suppl., 80, 791, (1992)
[32] Tóth, G., The ∇·B=0 constraint in shock-capturing magnetohydrodynamics codes, J. comput. phys., 161, 605, (2000) · Zbl 0980.76051
[33] Zachary, A.L.; Malagoli, A.; Colella, P., A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. sci. comput., 15, 263, (1994) · Zbl 0797.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.