×

zbMATH — the first resource for mathematics

Information and entropy econometrics – editor’s view. (English) Zbl 1088.62519

MSC:
62P20 Applications of statistics to economics
62B10 Statistical aspects of information-theoretic topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chernoff, H.: A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of mathematical statistics 23, 493-507 (1952) · Zbl 0048.11804
[2] Cover, T. M.; Thomas, J. A.: Elements of information theory. (1991) · Zbl 0762.94001
[3] Cressie, N.; Read, T. R. C.: Multinomial goodness-of-fit tests. Journal of the royal statistical society, series B 46, 440-464 (1984) · Zbl 0571.62017
[4] Csiszar, I.: Sanov property, generalized I-projection and a conditional limit theorem. Annals of probability 12, 768-793 (1984) · Zbl 0544.60011
[5] Davis, H. T.: The theory of econometrics. (1941) · Zbl 0060.32104
[6] Donoho, D. L.; Johnstone, I. M.; Hoch, J. C.; Stern, A. S.: Maximum entropy and the nearly black object. Journal of the royal statistical society, series B 54, 41-81 (1992) · Zbl 0788.62103
[7] Ellis, R. S.: Entropy, large deviations, and statistical mechanics. (1985) · Zbl 0566.60097
[8] Gamboa, F.; Gassiat, E.: Bayesian methods and maximum entropy for ill-posed inverse problems. Annals of statistics 25, No. 1, 328-350 (1997) · Zbl 0871.62010
[9] Golan, A., Perloff, J.M., 2002. Comparison of maximum entropy and higher-order entropy estimators. Journal of Econometrics 107 (this issue). · Zbl 1043.62001
[10] Goldstine, H. H.: A history of the calculus of variation from 17th through the 19th century. (1980) · Zbl 0452.49002
[11] Imbens, G. W.; Johnson, P.; Spady, R. H.: Information-theoretic approaches to inference in moment condition models. Econometrica 66, 333-357 (1998) · Zbl 1055.62512
[12] Jaynes, E. T.: Information theory and statistical mechanics. Physics review 106, 620-630 (1957) · Zbl 0084.43701
[13] Jaynes, E. T.: Information theory and statistical mechanics II. Physics review 108, 171-190 (1957) · Zbl 0084.43701
[14] Kitamura, Y.; Stutzer, M.: An information-theoretic alternative to generalized method of moment estimation. Econometrica 66, No. 4, 861-874 (1997) · Zbl 0894.62011
[15] Kullback, S.: Certain inequalities in information theory and the cramer–Rao inequality. Annals of mathematical statistics 25, 745-751 (1954) · Zbl 0057.35402
[16] Kullback, S.: Information theory and statistics. (1959) · Zbl 0088.10406
[17] Kullback, S.; Leibler, R. A.: On information and sufficiency. Annals of mathematical statistics 22, 79-86 (1951) · Zbl 0042.38403
[18] Lindley, D. V.: On a measure of the information provided by an experiment. Annals of mathematical statistics 27, 986-1005 (1956) · Zbl 0073.14103
[19] Maasoumi, E.: A compendium to information theory in economics and econometrics. Econometric reviews 12, 137-181 (1993) · Zbl 0769.62003
[20] Renyi, A., 1961. On measures of information and entropy. Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, Vol. I, 1960, p. 547.
[21] Renyi, A.: Probability theory. (1970) · Zbl 0245.60002
[22] Sagan, H.: The calculus of variation. (1993) · Zbl 0833.26009
[23] Shannon, C. E.: A mathematical theory of communication. Bell system technical journal 27, 379-423 (1948) · Zbl 1154.94303
[24] Skilling, J.: Classic maximum entropy. Maximum entropy and Bayesian methods in science and engineering, 45-52 (1989) · Zbl 0850.62124
[25] Soofi, E. S.: Capturing the intangible concept of information. Journal of the American statistical association 89, 1243-1254 (1994) · Zbl 0810.62012
[26] Soofi, E.S., Retzer, J.J., 2002. Information indices: unification and applications. Journal of Econometrics 107 (this issue). · Zbl 1051.62006
[27] Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. Journal of statistical physics 52, 479-487 (1988) · Zbl 1082.82501
[28] Zellner, A.: Optimal information processing and Bayes theorem. American statistician 42, 278-284 (1988)
[29] Zellner, A.: Bayesian methods and entropy in economics and econometrics. Maximum entropy and Bayesian methods, 17-31 (1991)
[30] Zellner, A., 1997. The Bayesian method of moments (BMOM): theory and applications. In: Fomby, T., Hill, R. (Eds.), Advances in Econometrics, Vol. 12, pp. 85–105. JAI Press, London, UK.
[31] Zellner, A., 2002. Information processing and Bayesian analysis. Journal of Econometrics 107 (this issue). · Zbl 1088.62521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.