# zbMATH — the first resource for mathematics

On robust stability of singular systems with random abrupt changes. (English) Zbl 1089.34046
This paper deals with the class of $$n$$-dimensional continuous-time singular linear systems with Markovian switching described by the following dynamics $E\dot x(t)= (A(r(t))+ D_A(r(t)) F_A(r(t)) E_A(r(t))) x(t),$ where the Markov process $$r(\cdot)$$ is a mode switching system, taking values in $$N$$ modes $$\{1,2,\dots, N\}$$ and the matrix $$E$$ may be singular. The author defines the following stability.
1. Let $$F_A(i)$$ be the zero matrix, for $$i= 1,2,\dots,N$$. The solution $$x(\cdot)$$ is said to be stochastically stable, if there exists a constant $$T(x_0, r_0)$$ such that ${\mathbf E}\Biggl(\int^\infty_0\| x(t)\|^2 dt/x(0)= x_0,\;r(0)= r_0\Biggr)\leq T(x_0, r_0).\tag{$$*$$}$ 2. $$F_A$$ is called admissible, if $$F_A^T(i)F_A(i)\leq$$ identity matrix, $$i= \{1,2,\dots,N\}$$. When the inequality $$(*)$$ is satisfied for all admissible $$F_A$$, we say that robust stochastic stability holds.
Using Lyapunov theory and algebraic results, the author derives a sufficient condition for stochastic stability in linear matrix inequality setting. Moreover, applying this condition, he gives a sufficient condition for the robust stochastic stability.

##### MSC:
 34F05 Ordinary differential equations and systems with randomness 34D20 Stability of solutions to ordinary differential equations 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text:
##### References:
  Boukas, E.K.; Hang, H., Exponential stability of stochastic systems with Markovian jumping parameters, Automatica, 35, 1437-1441, (1999) · Zbl 0932.93084  Boukas, E.K.; Liu, Z.K., Robust $$H_\infty$$ control of discrete-time Markovian jump linear systems with mode-dependent time-delays, IEEE trans. automat. control, 46, 1918-1924, (2001) · Zbl 1005.93050  Boukas, E.K.; Liu, Z.K., Robust stability and stability of Markov jump linear uncertain systems with mode-dependent time delays, J. optim. theory appl., 209, 587-600, (2001) · Zbl 0988.93062  Boukas, E.K.; Liu, Z.K., Deterministic and stochastic systems with time-delay, (2002), Birkhauser Boston · Zbl 0998.93041  Boukas, E.K.; Liu, Z.K., Delay-dependent stability analysis of singular linear continuous-time systems, IEE proc. control theory appl., 150, 2, 325-330, (2003)  Boukas, E.K.; Liu, Z.K., Delay-dependent stabilization of singularly perturbed jump linear systems, Int. J. control, 77, 3, 310-319, (2004) · Zbl 1070.93037  Boukas, E.K.; Liu, Z.K.; Liu, G.X., Delay-dependent robust stability and $$H_\infty$$ control of jump linear systems with time-delay, Int. J. control, 74, 329-340, (2001) · Zbl 1015.93069  Cao, Y.Y.; Lam, J., Robust $$H_\infty$$ control of uncertain Markovian jump systems with time-delay, IEEE trans. automat. control, 45, 1, (2000) · Zbl 0983.93075  L. Dai, Singular control systems, Lecture Notes in Control and Information Sciences, vol. 118, Springer, New York, 1989. · Zbl 0669.93034  de Souza, C.E.; Fragoso, M.D., Robust $$H_\infty$$ filtering for Markovian jump linear systems, (), 4808-4813  Feng, X.; Loparo, K.A.; Ji, Y.; Chizeck, H.J., Stochastic stability properties of jump linear systems, IEEE trans. automat. control, 37, 38-53, (1992) · Zbl 0747.93079  Fletcher, L.R., Pole assignment and controllability subspaces in descriptor systems, Int. J. control, 66, 677-709, (1997) · Zbl 0876.93040  Fridman, E., A Lyapunov-based approach to stability of descriptor systems with delay, (), 2850-2855  Ji, Y.; Chizeck, H.J., Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control, IEEE trans. automat. control, 35, 777-788, (1990) · Zbl 0714.93060  Kumar, A.; Daoutidis, P., Feedback control of nonlinear differential-algebraic equation systems, Aiche j., 41, 619-636, (1995)  Lan, W.; Huang, J., Semiglobal stabilization and output regulation of singular linear systems with input saturation, IEEE trans. automat. control, 48, 7, 1274-1280, (2003) · Zbl 1364.93644  Lewis, F.L., A survey of linear singular systems, Circuits systems signal process., 5, 3-36, (1986) · Zbl 0613.93029  Mao, X., Stability of stochastic differential equations with Markovian switching, Stochastic process. appl., 79, 45-67, (1999) · Zbl 0962.60043  Mariton, M., Control of nonlinear systems with Markovian parameter changes, IEEE trans. automat. control, 36, 233-238, (1991) · Zbl 0764.93084  Newcomb, R.W., The semistate description of nonlinear time-variable circuits, IEEE trans. circuits and systems, 28, 62-71, (1981)  Shi, P.; Boukas, E.K., $$H_\infty$$-control for Markovian jumping linear systems with parametric uncertainty, J. optim. theory appl., 95, 75-99, (1997) · Zbl 1026.93504  Shi, P.; Boukas, E.K., On $$\mathcal{H}_\infty$$ control design for singular continuous-time delay systems with parametric uncertainties, Nonlinear dynamics systems theory, 4, 1, 59-71, (2004) · Zbl 1073.93020  Takaba, K.; Morihira, N.; Katayama, T., A generalized Lyapunov theorem for descriptor system, Systems control lett., 24, 49-51, (1995) · Zbl 0883.93035  Verghese, G.C.; Levy, B.C.; Kailath, T., A generalized state-space for singular systems, IEEE trans. automat. control, 26, 811-831, (1981) · Zbl 0541.34040  Xu, S.; Dooren, P.V.; Stefan, R.; Lam, J., Robust stability and stabilization of discrete-time singular systems with state delay and parameter uncertainty, IEEE trans. automat. control, 47, 7, 1122-1128, (2002) · Zbl 1364.93723  Xu, S.; Lam, J., Robust stability for uncertain discrete singular systems with state delay, Asian J. control, 5, 399-405, (2003)  Xu, S.; Lam, J., Robust stability and stabilization of discrete-time singular systems: an equivalent characterization, IEEE trans. automat. control, 49, 4, 568-574, (2004) · Zbl 1365.93375  Xu, S.; Lam, J.; Zhang, L., Robust D-stability analysis for uncertain discrete singular systems with state delay, IEEE trans. circuits and systems I, 49, 551-555, (2002) · Zbl 1368.93513  S. Xu, C. Yang, Stabilization of discrete-time singular systems: a matrix inequalities approach, Automatica 35 (1999) 1613-1617, 776-783. · Zbl 0959.93048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.