×

zbMATH — the first resource for mathematics

Iterated He’s homotopy perturbation method for quadratic Riccati differential equation. (English) Zbl 1089.65072
Summary: The iterated homotopy perturbation method of J. He [Int. J. Non-Linear Mech. 35, No. 1, 37–43 (2000; Zbl 1068.74618)] is proposed to solving a quadratic Riccati differential equation. Comparisons are made between Adomian’s decomposition method, the exact solution, and the proposed method. The results reveal that the method is very effective and simple.

MSC:
65L10 Numerical solution of boundary value problems involving ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0802.65122
[2] Adomian, G.; Rach, R., On the solution of algebraic equations by the decomposition method, Math. anal. appl., 105, 141-166, (1985) · Zbl 0552.60060
[3] El-Shahed, M., Application of he’s homotopy perturbation method to volterra’s integro-differential equation, Int. J. nonlinear sci. numer. simul., 6, 2, 163-168, (2005) · Zbl 1401.65150
[4] El-Tawil, M.A.; Bahnasawi, A.A.; Abdel-Naby, A., Solving Riccati differential equation using adomian’s decomposition method, Appl. math. comput., 157, 503-514, (2004) · Zbl 1054.65071
[5] Hillermeier, C., Generalized homotopy approach to multiobjective optimization, Int. J. optim. theory appl., 110, 3, 557-583, (2001) · Zbl 1064.90041
[6] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. methods appl. mech. eng., 167, 1-2, 57-68, (1998) · Zbl 0942.76077
[7] He, J.H., Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. methods appl. mech. eng., 167, 1-2, 69-73, (1998) · Zbl 0932.65143
[8] He, J.H., An approximate solution technique depending upon an artificial parameter, Commun. nonlinear sci. simulat., 3, 2, 92-97, (1998) · Zbl 0921.35009
[9] He, J.H., Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. non-linear mech., 34, 4, 699-708, (1999) · Zbl 1342.34005
[10] He, J.H., Homotopy perturbation technique, Comput. methods appl. mech. eng., 178, 3/4, 257-262, (1999) · Zbl 0956.70017
[11] He, J.H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. nonlinear mech., 35, 1, 37-43, (2000) · Zbl 1068.74618
[12] He, J.H., A review on some new recently developed nonlinear analytical techniques, Int. J. nonlinear sci. numer. simul., 1, 1, 51-70, (2000) · Zbl 0966.65056
[13] He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl. math. comput., 114, 2-3, 115-123, (2000) · Zbl 1027.34009
[14] He, J.H., Bookkeeping parameter in perturbation methods, Int. J. nonlinear sci. numer. simul., 2, 3, 257-264, (2001) · Zbl 1072.34508
[15] He, J.H., Modified lindsted-poincare methods for some strongly nonlinear oscillations, part III: double series expansion, Int. J. nonlinear sci. numer. simul., 2, 4, 317-320, (2001) · Zbl 1072.34507
[16] He, J.H., Modified Lindstedt-poincare methods for some strongly non-linear oscillations, part I: expansion of a constant, Int. J. nonlinear mech., 37, 2, 309-314, (2002) · Zbl 1116.34320
[17] He, J.H., Modified Lindstedt-poincare methods for some strongly non-linear oscillations, part II: a new transformation, Int. J. nonlinear mech., 37, 2, 315-320, (2002) · Zbl 1116.34321
[18] He, J.H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. math. comput., 151, 287-292, (2004) · Zbl 1039.65052
[19] He, J.H., Comparison of homotopy perturbtion method and homotopy analysis method, Appl. math. comput., 156, 527-539, (2004) · Zbl 1062.65074
[20] He, J.H., Asymptotology by homotopy perturbtion method, Appl. math. comput., 156, 591-596, (2004) · Zbl 1061.65040
[21] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. nonlinear sci. numer. simul., 6, 2, 207-208, (2005) · Zbl 1401.65085
[22] He, J.H.; Wan, Y.Q.; Guo, Q., An iteration formulation for normalized diode characteristics, Int. J. circ. theor. appl., 32, 6, 629-632, (2004) · Zbl 1169.94352
[23] Liu, H.M., Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-poincare method, Chaos, solitons & fractals, 23, 2, 577-579, (2005) · Zbl 1078.34509
[24] Nayfeh, A.H., Problems in perturbation, (1985), J. Wiley New York · Zbl 0139.31904
[25] Wang, Q.; Chen, Y.; Zhang, H.Q., A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos, solitons & fractals, 25, 5, 1019-1028, (2005) · Zbl 1070.35073
[26] Xie, F.; Gao, X., Exact travelling wave solutions for a class of nonlinear partial differential equations, Chaos, solitons & fractals, 19, 5, 1113-1117, (2004) · Zbl 1068.35146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.