Mehra, Mani; Kumar, B. V. Rathish Time accurate fast three-step wavelet-Galerkin method for partial differential equations. (English) Zbl 1089.65099 Int. J. Wavelets Multiresolut. Inf. Process. 4, No. 1, 65-79 (2006). Cited in 5 Documents MSC: 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 35K15 Initial value problems for second-order parabolic equations 65T60 Numerical methods for wavelets 35L45 Initial value problems for first-order hyperbolic systems 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:linear advection-diffusion equation; numerical examples; linear advection equation; parabolic equation; hyperbolic equation; Burgers equation; three-step wavelet-Galerkin method; numerical experiments; shock; Numerical results PDF BibTeX XML Cite \textit{M. Mehra} and \textit{B. V. R. Kumar}, Int. J. Wavelets Multiresolut. Inf. Process. 4, No. 1, 65--79 (2006; Zbl 1089.65099) Full Text: DOI References: [1] Daubechies I., Comm. Pure Appl. Math. 41 pp 906– [2] Liandrat J., Wavelets Appl. pp 227– [3] Latto A., C. R. Acad. Sci. Paris Sér. I 311 pp 903– [4] Farge M., Proc. IEEE 84 [5] DOI: 10.1006/jcph.1996.5573 · Zbl 0868.65067 · doi:10.1006/jcph.1996.5573 [6] R. Glowinski, Computing Methods in Applied Sciences and Engineering (SIAM, PA, 1990) pp. 55–120. [7] DOI: 10.1137/0915048 · Zbl 0851.65060 · doi:10.1137/0915048 [8] DOI: 10.1002/nme.1620200108 · Zbl 0524.65071 · doi:10.1002/nme.1620200108 [9] DOI: 10.1002/cpa.3160130205 · Zbl 0152.44802 · doi:10.1002/cpa.3160130205 [10] DOI: 10.1002/fld.1650160904 · Zbl 0772.76036 · doi:10.1002/fld.1650160904 [11] Rathish Kumar B. V., Appl. Math. Comput. 162 pp 447– [12] Rathish Kumar B. V., Appl. Math. Comput. 166 pp 312– [13] Lambert J. D., Computational Methods for Ordinary Differential Equations (1973) · Zbl 0258.65069 [14] DOI: 10.1016/0021-9991(87)90191-4 · Zbl 0621.65102 · doi:10.1016/0021-9991(87)90191-4 [15] DOI: 10.1137/S1064827597316278 · Zbl 0959.65109 · doi:10.1137/S1064827597316278 [16] DOI: 10.1023/A:1023252610346 · Zbl 0907.65093 · doi:10.1023/A:1023252610346 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.