×

zbMATH — the first resource for mathematics

Analytical solution of a fractional diffusion equation by Adomian decomposition method. (English) Zbl 1089.65108
Summary: This paper presents an analytical solution of a fractional diffusion equation by the Adomian decomposition method. By using an initial value, the explicit solution of the equation is presented in closed form and then its numerical solution represented graphically. The present method performs extremely well in terms of efficiency and simplicity.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35K55 Nonlinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Elec. trans. numer. anal., 5, 1-6, (1997) · Zbl 0890.65071
[2] K. Diethelm, A.D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, in: S. Heinzel, T. Plesser (Eds.), GWDG-Berichte, Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis 1998 (No. 52), Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, 1999, pp. 57-71.
[3] Diethelm, K.; Ford, N.J., Analysis of fractional differential equations, J. math. anal. appl., 265, 229-248, (2002) · Zbl 1014.34003
[4] Diethelm, K.; Ford, N.J.; Freed, A.D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn., 29, 3-22, (2002) · Zbl 1009.65049
[5] Diethelm, K.; Ford, N.J., Numerical solution of the bagley-torvik equation, Bit numer. math., 42, 3, 490-507, (2002) · Zbl 1035.65067
[6] Diethelm, K.; Ford, A.D., On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, (), 217-224
[7] Diethelm, K.; Ford, N.J., The numerical solution of linear and nonlinear fractional differential equations involving fractional derivatives of several orders, Numerical analysis report, vol. 379, (2001), Manchester Centre for Computational Mathematics Manchester, England
[8] R. Gorenflo, E.A. Abdel-Rehim, Approximation of time-fractional diffusion with central drift by difference schemes, Berlin Free University, 2003. Available from: <http://www.math.fu-berlin.de/publ/index.html>.
[9] Gorenflo, R.; Mainardi, F., Fractional calculus and stable probability distributions, Arch. mech., 50, 377-388, (1998) · Zbl 0934.35008
[10] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos soliton fract., 7, 9, 1461-1477, (1996) · Zbl 1080.26505
[11] Gorenflo, R.; Luchko, Y.; Mainardi, F., Wright functions as scale-invariant solutions of the diffusion-wave equation, J. comput. appl. math., 118, 175-191, (2000) · Zbl 0973.35012
[12] Mainardi, F.; Pagnini, G., The wright functions as solutions of the time-fractional diffusion equation, Appl. math. comput., 141, 51-62, (2003) · Zbl 1053.35008
[13] Adomian, G., Nonlinear stochastic systems theory and applications to physics, (1989), Kluwer Academic Publishers Netherlands · Zbl 0659.93003
[14] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Publishers Boston · Zbl 0802.65122
[15] Adomian, G., An analytical solution of the stochastic Navier-Stokes system, Found. phys., 21, 7, 831-843, (1991)
[16] Adomian, G.; Rach, R., Linear and nonlinear Schrödinger equations, Found. phys., 21, 983-991, (1991)
[17] Adomian, G., Solution of physical problems by decomposition, Comput. math. appl., 27, 9/10, 145-154, (1994) · Zbl 0803.35020
[18] Adomian, G., Solutions of nonlinear P.D.E., Appl. math. lett., 11, 3, 121-123, (1998) · Zbl 0933.65121
[19] Abbaoui, K.; Cherruault, Y., The decomposition method applied to the Cauchy problem, Kybernetes, 28, 103-108, (1999) · Zbl 0937.65074
[20] Kaya, D.; Yokus, A., A numerical comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations, Math. comput. simul., 60, 6, 507-512, (2002) · Zbl 1007.65078
[21] Wazwaz, A., A reliable modification of Adomian decomposition method, Appl. math. comput., 102, 1, 77-86, (1999) · Zbl 0928.65083
[22] Kaya, D.; El-Sayed, S.M., On a generalized fifth order KdV equations, Phys. lett. A, 310, 1, 44-51, (2003) · Zbl 1011.35114
[23] Kaya, D.; El-Sayed, S.M., An application of the decomposition method for the generalized KdV and RLW equations, Chaos soliton fract., 17, 5, 869-877, (2003) · Zbl 1030.35139
[24] Kaya, D., An explicit and numerical solutions of some fifth-order KdV equation by decomposition method, Appl. math. comput., 144, 2-3, 353-363, (2003) · Zbl 1024.65096
[25] Kaya, D., A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Appl. math. comput., 149, 3, 833-841, (2004) · Zbl 1038.65101
[26] George, A.J.; Chakrabarti, A., The Adomian method applied to some extraordinary differential equations, Appl. math. lett., 8, 3, 91-97, (1995) · Zbl 0828.65081
[27] Arora, H.L.; Abdelwahid, F.I., Solutions of non-integer order differential equations via the Adomian decomposition method, Appl. math. lett., 6, 1, 21-23, (1993) · Zbl 0772.34009
[28] Shawagfeh, N.T., The decomposition method for fractional differential equations, J. frac. calc., 16, 27-33, (1999) · Zbl 0956.34004
[29] Shawagfeh, N.T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. math. comput., 131, 517-529, (2002) · Zbl 1029.34003
[30] Saha Ray, S.; Bera, R.K., Solution of an extraordinary differential equation by Adomian decomposition method, J. appl. math., 4, 331-338, (2004) · Zbl 1080.65069
[31] Saha Ray, S.; Bera, R.K., Analytical solution of a dynamic system containing fractional derivative of order 1/2 by Adomian decomposition method, Trans. ASME J. appl. mech., 72, 2, 290-295, (2005) · Zbl 1111.74611
[32] S. Saha Ray, R.K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., in press, doi:10.1016/j.amc.2004.07.020. · Zbl 1089.65108
[33] S. Saha Ray, R.K. Bera, Analytical solution of the Bagley Torvik equation by Adomian decomposition method, Appl. Math. Comput., in press, doi:10.1016/j.amc.2004.09.006. · Zbl 1109.65072
[34] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego, CA · Zbl 0918.34010
[35] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York and London · Zbl 0428.26004
[36] S. Wolfram, Mathematica for Windows, Version 5.0, Wolfram Research, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.