Numerical methods for multiscale transport equations and application to two-phase porous media flow. (English) Zbl 1089.76049

Summary: We discuss numerical methods for linear and nonlinear transport equations with multiscale velocity fields. These methods are themselves multiscaled in nature in the sense that they use macro and micro grids and multiscale test functions. We demonstrate the efficiency of these methods and apply them to two-phase flows in heterogeneous porous media.


76M50 Homogenization applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI


[1] Allaire, G., Homogenization and two-scale convergence, SIAM J. math. anal., 23, 1482-1518, (1992) · Zbl 0770.35005
[2] Chorin, A.J., Numerical solution of the Navier-Stokes equations, Math. comput., 22, 745-762, (1968) · Zbl 0198.50103
[3] Christie, M.A., Upscaling for reservoir simulation, J. petrol. technol., 48, 1004-1010, (1996)
[4] E, W., Homogenization of linear and nonlinear transport equations, Commun. pure appl. math., XLV, 301-326, (1992) · Zbl 0794.35014
[5] E, W.; Engquist, B., The heterogeneous multi-scale methods, Commun. math. sci., 1, 87-120, (2003)
[6] W. E, B. Engquist, The heterogeneous multi-scale method for homogenization problems, Multiscale Model. Simulat., submitted. Available at <http://www.math.princeton.edu/multiscale/>. · Zbl 1086.65521
[7] E, W.; Ming, P.B.; Zhang, P.W., Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. AMS, 18, 121-156, (2005) · Zbl 1060.65118
[8] Efendiev, Y.; Durlofsky, L.J., Numerical modeling of subgrid heterogeneity in two phase flow simulations, Water resour. res., 38, 1128-1138, (2002)
[9] Efendiev, Y.; Durlofsky, L.J., A generalized convection-diffusion model for subgrid transport in porous media, Multiscale model. simulat., 1, 504-526, (2003) · Zbl 1191.76098
[10] Engquist, B., Computation of oscillatory solutions to hyperbolic differential equations, Springer lect. notes math., 1270, 10-22, (1987)
[11] Evans, L.C., The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. roy. soc. Edinburgh, 111A, 359-375, (1989) · Zbl 0679.35001
[12] Langlo, P.; Espedal, M.S., Macrodispersion for two-phase, immisible flow in porous media, Adv. water resour., 17, 297-316, (1994)
[13] Matache, A.-M.; Schwab, C., Two-scale FEM for homogenization problems, Math. model. numer. anal., 36, 537-572, (2002) · Zbl 1070.65572
[14] P.B. Ming, X. Yue, Numerical methods for multiscale elliptic problems. Preprint 2003. Available at <http://www.math.princeton.edu/multiscale/>. · Zbl 1092.65102
[15] Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. math. anal., 20, 608-623, (1989) · Zbl 0688.35007
[16] Oden, J.T.; Vemaganti, K.S., Estimation of local modelling error and global-oriented adaptive modeling of heterogeneous materials: error estimates and adaptive algorithms, J. comput. phys., 164, 22-47, (2000) · Zbl 0992.74072
[17] Schwab, C.; Matache, A.-M., Generalized FEM for homogenization problems, () · Zbl 1052.74591
[18] L. Tartar, Solutions oscillantes des quations de Carleman, Goulaouic-Meyer-Schwartz Seminar, 1980-1981, Exp. No. XII, 15 pp., cole Polytech., Palaiseau, 1981.
[19] Wallstrom, T.C.; Hou, S.; Christie, M.A.; Durlofsky, L.J.; Sharp, D.H., Accurate scale up of two phase flow using renormalization and nonuniform coarsening, Comput. geosci., 3, 69-87, (1999) · Zbl 0963.76558
[20] Zhang, D.; Li, L.; Tchelepi, H.A., Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs, Spe j., 5, 60-70, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.